Dose prediction via distance-guided deep learning: Initial development for nasopharyngeal carcinoma radiotherapy

鼻咽癌 放射治疗 医学 深度学习 人工智能 计算机科学 放射科
作者
Meiyan Yue,Xiaoguang Xue,Zhanyu Wang,R. Lambo,Wei Zhao,Yaoqin Xie,Jing Cai,Wenjian Qin
出处
期刊:Radiotherapy and Oncology [Elsevier BV]
卷期号:170: 198-204 被引量:31
标识
DOI:10.1016/j.radonc.2022.03.012
摘要

Geometric information such as distance information is essential for dose calculations in radiotherapy. However, state-of-the-art dose prediction methods use only binary masks without distance information. This study aims to develop a dose prediction deep learning method for nasopharyngeal carcinoma radiotherapy by taking advantage of the distance information as well as the mask information.A novel transformation method based on boundary distance was proposed to facilitate the prediction of dose distributions. Radiotherapy datasets of 161 nasopharyngeal carcinoma patients were retrospectively collected, including binary masks of organs-at-risk (OARs) and targets, planning CT, and clinical plans. The patients were randomly divided into 130, 11 and 20 cases for training, validating, and testing the models, respectively. Furthermore, 40 patients from an external cohort were used to test the generalizability of the models.The proposed method shows superior performance. The predicted dose error and dose-volume histogram (DVH) error of our method were 7.51% and 11.6% lower than the mask-based method, respectively. For the inverse planning, compared with mask-based methods, our method provided similar performances on the GTVnx and OARs and outperformed on the GTVnd and the CTV, the pass rates of which increased from 89.490% and 90.016% to 96.694% and 91.189%, respectively.The preliminary results on nasopharyngeal carcinoma radiotherapy cases showed that our proposed distance-guided method for dose prediction achieved better performance than mask-based methods. Further studies with more patients and on other cancer sites are warranted to fully validate the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zhan完成签到,获得积分10
2秒前
SBoot完成签到,获得积分10
2秒前
3秒前
张福豪发布了新的文献求助30
3秒前
3秒前
东耦应助小哈采纳,获得10
5秒前
英俊的铭应助小小技术工采纳,获得10
6秒前
ywhys发布了新的文献求助10
8秒前
klj完成签到,获得积分10
8秒前
兔BF完成签到,获得积分10
9秒前
10秒前
程欣发布了新的文献求助10
14秒前
zena92发布了新的文献求助10
15秒前
xuyuhao发布了新的文献求助10
15秒前
16秒前
田様应助任性的翼采纳,获得10
17秒前
18秒前
wjs发布了新的文献求助20
19秒前
年年完成签到,获得积分10
19秒前
20秒前
20秒前
哈基米德应助老朱采纳,获得10
20秒前
淡淡涫完成签到,获得积分10
21秒前
tovfix发布了新的文献求助10
21秒前
23秒前
23秒前
lalalapa666发布了新的文献求助10
23秒前
聪聪完成签到,获得积分10
23秒前
klj关闭了klj文献求助
23秒前
林澈完成签到 ,获得积分10
23秒前
木木应助优雅子骞采纳,获得10
24秒前
所所应助krismile采纳,获得10
24秒前
25秒前
聪聪发布了新的文献求助10
27秒前
科目三应助星川采纳,获得10
27秒前
27秒前
啦啦啦完成签到,获得积分10
27秒前
英俊的铭应助王柯采纳,获得10
28秒前
隐形荟发布了新的文献求助10
29秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4056219
求助须知:如何正确求助?哪些是违规求助? 3594312
关于积分的说明 11419936
捐赠科研通 3320180
什么是DOI,文献DOI怎么找? 1825593
邀请新用户注册赠送积分活动 896656
科研通“疑难数据库(出版商)”最低求助积分说明 817971