MAMF-GCN: Multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder

计算机科学 人工智能 卷积神经网络 图形 模式识别(心理学) 编码器 深度学习 数据挖掘 机器学习 理论计算机科学 操作系统
作者
Jiacheng Pan,Haocai Lin,Yihong Dong,Y W Wang,Yunxin Ji
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105823-105823 被引量:38
标识
DOI:10.1016/j.compbiomed.2022.105823
摘要

Existing diagnoses of mental disorders rely on symptoms, patient descriptions, and scales, which are not objective enough. We attempt to explore an objective diagnostic method on fMRI data. Graph neural networks (GNN) have been paid more attention recently because of their advantages in processing unstructured relational data, especially for fMRI data. However, how to deeply embed and well-integrate with different modalities and scales on GNN is still a challenge. Instead of reaching a high degree of fusion, existing GCN methods simply combine image and non-image data. Most graph convolutional network (GCN) models use shallow structures, making it challenging to learn about potential information. Furthermore, current graph construction approaches usually use a single specific brain atlas, limiting the analysis and results. In this paper, a multi-scale adaptive multi-channel fusion deep graph convolutional network based on an attention mechanism (MAMF-GCN) is proposed to better integrate features of modalities and different atlas by exploiting multi-channel correlation. An encoder automatically combines one channel with non-imaging data to generate similarity weights between subjects using a similarity perception mechanism. Other channels generate multi-scale imaging features of fMRI data after processing in the different atlas. Multi-modal information is fused using an adaptive convolution module that applies a deep graph convolutional network (GCN) to extract information from richer hidden layers. To demonstrate the effectiveness of our approach, we evaluate the performance of the proposed method on the Autism Brain Imaging Data Exchange (ABIDE) dataset and the Major Depressive Disorder (MDD) dataset. The experimental result shows that the proposed method outperforms many state-of-the-art methods in node classification performance. An extensive group of experiments on two disease prediction tasks demonstrates that the performance of the proposed MAMF-GCN on MDD/ABIDE dataset is improved by 3.37%–39.83% and 12.59%–32.92%, respectively. Moreover, our proposed method has also shown very effective performance in real-life clinical diagnosis. The comprehensive experiments demonstrate that our method is effective for node classification with brain disorders diagnosis. The proposed MAMF-GCN method simultaneously extracts specific and common embeddings from the topology composed of multi-scale imaging features, phenotypic information, and their combinations, then learning adaptive embedding weights by attention mechanism, which can capture and fuse the multi-scale essential embeddings to improve the classification performance of brain disorder diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
小熊完成签到,获得积分10
2秒前
谨慎的擎宇完成签到,获得积分10
8秒前
科研通AI2S应助kyrie采纳,获得10
10秒前
小熊饼干完成签到,获得积分10
16秒前
qiao应助王志芬采纳,获得10
19秒前
脑洞疼应助优秀藏鸟采纳,获得30
22秒前
24秒前
25秒前
27秒前
28秒前
肖恩发布了新的文献求助10
30秒前
钠钾蹦发布了新的文献求助10
33秒前
aurora完成签到 ,获得积分10
33秒前
nb完成签到,获得积分10
33秒前
活力毛豆完成签到 ,获得积分10
35秒前
袁钰琳完成签到 ,获得积分10
38秒前
JiayanLee完成签到,获得积分10
38秒前
SciGPT应助钠钾蹦采纳,获得10
38秒前
lwl666完成签到,获得积分10
40秒前
Goodenough完成签到 ,获得积分10
40秒前
xiaoE完成签到,获得积分10
41秒前
45秒前
45秒前
45秒前
星星要睡觉啦完成签到,获得积分10
45秒前
none完成签到,获得积分10
46秒前
陈列发布了新的文献求助10
46秒前
47秒前
wy.he应助科研通管家采纳,获得10
48秒前
48秒前
48秒前
Hanzhiding发布了新的文献求助10
48秒前
共享精神应助Steven采纳,获得30
48秒前
49秒前
wxx发布了新的文献求助10
49秒前
51秒前
欣喜亚男发布了新的文献求助10
54秒前
54秒前
哎哟很烦完成签到,获得积分10
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325210
关于积分的说明 10221856
捐赠科研通 3040345
什么是DOI,文献DOI怎么找? 1668745
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758549