清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An Effective Video Transformer With Synchronized Spatiotemporal and Spatial Self-Attention for Action Recognition

计算机科学 人工智能 计算机视觉 变压器 编码器 卷积神经网络 模式识别(心理学) 工程类 操作系统 电气工程 电压
作者
Saghir Alfasly,Charles K. Chui,Qingtang Jiang,Jian Lü,Xu Chen
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (2): 2496-2509 被引量:22
标识
DOI:10.1109/tnnls.2022.3190367
摘要

Convolutional neural networks (CNNs) have come to dominate vision-based deep neural network structures in both image and video models over the past decade. However, convolution-free vision Transformers (ViTs) have recently outperformed CNN-based models in image recognition. Despite this progress, building and designing video Transformers have not yet obtained the same attention in research as image-based Transformers. While there have been attempts to build video Transformers by adapting image-based Transformers for video understanding, these Transformers still lack efficiency due to the large gap between CNN-based models and Transformers regarding the number of parameters and the training settings. In this work, we propose three techniques to improve video understanding with video Transformers. First, to derive better spatiotemporal feature representation, we propose a new spatiotemporal attention scheme, termed synchronized spatiotemporal and spatial attention (SSTSA), which derives the spatiotemporal features with temporal and spatial multiheaded self-attention (MSA) modules. It also preserves the best spatial attention by another spatial self-attention module in parallel, thereby resulting in an effective Transformer encoder. Second, a motion spotlighting module is proposed to embed the short-term motion of the consecutive input frames to the regular RGB input, which is then processed with a single-stream video Transformer. Third, a simple intraclass frame interlacing method of the input clips is proposed that serves as an effective video augmentation method. Finally, our proposed techniques have been evaluated and validated with a set of extensive experiments in this study. Our video Transformer outperforms its previous counterparts on two well-known datasets, Kinetics400 and Something-Something-v2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jlwang完成签到,获得积分10
7秒前
15秒前
人生苦短完成签到,获得积分10
19秒前
NexusExplorer应助Kevin采纳,获得10
24秒前
小二郎应助ybwei2008_163采纳,获得10
25秒前
大水完成签到 ,获得积分10
25秒前
善学以致用应助ybwei2008_163采纳,获得10
43秒前
58秒前
ybwei2008_163发布了新的文献求助10
1分钟前
1分钟前
ybwei2008_163发布了新的文献求助10
1分钟前
科研通AI2S应助Emad0gh采纳,获得10
1分钟前
1分钟前
1分钟前
慕容飞凤完成签到,获得积分10
1分钟前
沉默的友安完成签到 ,获得积分10
1分钟前
ybwei2008_163完成签到,获得积分20
1分钟前
黄博完成签到 ,获得积分10
1分钟前
陌上之心完成签到 ,获得积分10
1分钟前
woods完成签到,获得积分10
1分钟前
chichenglin完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
香菜精发布了新的文献求助10
2分钟前
香菜精完成签到,获得积分10
2分钟前
kakak发布了新的文献求助10
2分钟前
会笑的蜗牛完成签到 ,获得积分10
2分钟前
xxxqqq完成签到,获得积分10
2分钟前
kakak完成签到,获得积分20
2分钟前
乐乐完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
今后应助科研通管家采纳,获得10
3分钟前
nenoaowu应助科研通管家采纳,获得50
3分钟前
dreamwalk完成签到 ,获得积分10
3分钟前
3分钟前
绿色心情完成签到 ,获得积分10
3分钟前
Raul完成签到 ,获得积分10
3分钟前
lingquanmeng发布了新的文献求助10
3分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475456
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818828
科研通“疑难数据库(出版商)”最低求助积分说明 771101