Prior wavelet knowledge for multi-modal medical image segmentation using a lightweight neural network with attention guided features

计算机科学 人工智能 分割 人工神经网络 模式识别(心理学) 深度学习 图像分割 背景(考古学) 计算机视觉 古生物学 生物
作者
Vivek Kumar Singh,Elham Yousef Kalafi,Shuhang Wang,Alex Benjamin,Mercy Nyamewaa Asiedu,Viksit Kumar,Anthony E. Samir
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:209: 118166-118166 被引量:7
标识
DOI:10.1016/j.eswa.2022.118166
摘要

Medical image segmentation plays a crucial role in diagnosing and staging diseases. It facilitates image analysis and quantification in multiple applications, but building the right appropriate solutions is essential and highly reliant on the features of different datasets and computational resources. Most existing approaches provide segmentation for a specific anatomical region of interest and are limited to multiple imaging modalities in a clinical setting due to their generalizability with high computational requirements. To mitigate these issues, we propose a robust and lightweight deep learning real-time segmentation network for multi-modality medical images called MISegNet. We incorporate discrete wavelet transform (DWT) of the input to extract salient features in the frequency domain. This mechanism allows the neurons' receptive field to enlarge within the network. We propose a self-attention-based global context-aware (SGCA) module with varying dilation rates to enlarge the field of view and designate the importance of each scale that enhances the network's ability to discriminate features. We build a residual shuffle attention (RSA) mechanism to improve the feature representation of the proposed model and formulate a new boundary-aware loss function called Farid End Point Error (FEPE) that correctly segments regions with ambiguous boundaries for edge detection. We confirm the versatility of the proposed model by performing experiments against eleven state-of-the-art segmentation methods on four datasets of different organs, including two publicly available datasets (i.e., ISBI2017, and COVID-19 CT) and two private datasets (i.e., ovary and liver ultrasound images). Experimental results prove that the MISegNet with 1.5M parameters, outperforms the state-of-the-art methods by 1.5%–7% (i.e., dice coefficient score) with a corresponding 23× decrease in the number of parameters and multiply-accumulate operations respectively compared to U-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
一个小短发完成签到 ,获得积分10
4秒前
神外第一刀完成签到 ,获得积分10
4秒前
小哇发布了新的文献求助10
5秒前
7秒前
8秒前
Gakay发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
14秒前
15秒前
Ikram发布了新的文献求助10
15秒前
zmnzmnzmn应助科研通管家采纳,获得20
15秒前
学术通zzz发布了新的文献求助30
15秒前
Ava应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
研友_VZG7GZ应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
灰色城市y应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
华仔应助科研通管家采纳,获得10
15秒前
16秒前
李爱国应助科研通管家采纳,获得10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
科目三应助科研通管家采纳,获得10
16秒前
Jasper应助科研通管家采纳,获得10
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
充电宝应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
123应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助禛禛采纳,获得10
16秒前
zrs发布了新的文献求助10
16秒前
18秒前
李健应助yaofan采纳,获得10
20秒前
科研通AI5应助东东采纳,获得10
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777883
求助须知:如何正确求助?哪些是违规求助? 3323395
关于积分的说明 10214380
捐赠科研通 3038627
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798195
科研通“疑难数据库(出版商)”最低求助积分说明 758304