清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MisRoBÆRTa: Transformers versus Misinformation

误传 变压器 心理学 计算机科学 工程类 电气工程 计算机安全 电压
作者
Ciprian-Octavian Truică,Elena-Simona Apostol
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (4): 569-569 被引量:27
标识
DOI:10.3390/math10040569
摘要

Misinformation is considered a threat to our democratic values and principles. The spread of such content on social media polarizes society and undermines public discourse by distorting public perceptions and generating social unrest while lacking the rigor of traditional journalism. Transformers and transfer learning proved to be state-of-the-art methods for multiple well-known natural language processing tasks. In this paper, we propose MisRoBÆRTa, a novel transformer-based deep neural ensemble architecture for misinformation detection. MisRoBÆRTa takes advantage of two state-of-the art transformers, i.e., BART and RoBERTa, to improve the performance of discriminating between real news and different types of fake news. We also benchmarked and evaluated the performances of multiple transformers on the task of misinformation detection. For training and testing, we used a large real-world news articles dataset (i.e., 100,000 records) labeled with 10 classes, thus addressing two shortcomings in the current research: (1) increasing the size of the dataset from small to large, and (2) moving the focus of fake news detection from binary classification to multi-class classification. For this dataset, we manually verified the content of the news articles to ensure that they were correctly labeled. The experimental results show that the accuracy of transformers on the misinformation detection problem was significantly influenced by the method employed to learn the context, dataset size, and vocabulary dimension. We observe empirically that the best accuracy performance among the classification models that use only one transformer is obtained by BART, while DistilRoBERTa obtains the best accuracy in the least amount of time required for fine-tuning and training. However, the proposed MisRoBÆRTa outperforms the other transformer models in the task of misinformation detection. To arrive at this conclusion, we performed ample ablation and sensitivity testing with MisRoBÆRTa on two datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sci完成签到 ,获得积分10
1秒前
GGBond完成签到 ,获得积分10
1秒前
zzz完成签到 ,获得积分10
7秒前
Aurora完成签到 ,获得积分10
8秒前
叮叮当当完成签到,获得积分10
12秒前
18秒前
18秒前
cdercder应助LK8669090采纳,获得20
19秒前
minnie完成签到 ,获得积分10
21秒前
Alex-Song完成签到 ,获得积分0
22秒前
23秒前
LT完成签到 ,获得积分0
31秒前
21完成签到 ,获得积分10
34秒前
yellowonion完成签到 ,获得积分10
49秒前
赵李锋完成签到,获得积分10
50秒前
贪玩钢铁侠完成签到,获得积分10
57秒前
生信小菜鸟完成签到 ,获得积分10
57秒前
Ava应助et采纳,获得10
57秒前
57秒前
1分钟前
1分钟前
1分钟前
明亮不乐发布了新的文献求助10
1分钟前
曾经不言完成签到 ,获得积分10
1分钟前
科研通AI5应助贪玩钢铁侠采纳,获得10
1分钟前
明亮不乐完成签到,获得积分10
1分钟前
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
杪夏二八完成签到 ,获得积分10
1分钟前
1分钟前
幽默的南珍完成签到 ,获得积分10
1分钟前
1分钟前
啦啦啦完成签到,获得积分20
1分钟前
twk发布了新的文献求助10
1分钟前
LZQ发布了新的文献求助10
1分钟前
那那发布了新的文献求助10
1分钟前
mey310完成签到 ,获得积分10
1分钟前
ding应助twk采纳,获得10
1分钟前
今天只做一件事应助那那采纳,获得10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330070
关于积分的说明 10244288
捐赠科研通 3045435
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759541