Channel Attention Image Steganography With Generative Adversarial Networks

隐写术 计算机科学 隐写分析技术 深度学习 人工智能 频道(广播) 鉴别器 模式识别(心理学) 自编码 图像(数学) 电信 探测器
作者
J. Tan,Xin Liao,Jiate Liu,Yun Cao,Hongbo Jiang
出处
期刊:IEEE Transactions on Network Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:9 (2): 888-903 被引量:119
标识
DOI:10.1109/tnse.2021.3139671
摘要

Recently, extensive research has revealed the enormous potential of deep learning in the application of image steganography. However, some defects still exist in previous studies on deep learning-based steganography. In this paper, we propose a novel end-to-end network architecture for image steganography with channel attention mechanisms based on generative adversarial networks, which can yield perceptually indistinguishable stego images at various capacities. Three subnetworks constitute our model, where a generator embeds the payload into cover images, an extractor extracts it from stego images, and a powerful steganalyzer acts as a discriminator to enhance steganographic security. We design a specific channel attention module, which tunes channel-wise features in the deep representation of images dynamically by exploiting channel interdependencies. The experimental results demonstrate that the channel attention strategy is conducive to improving the quality of generated stego images and the accuracy of message extraction. To tackle the inevitable issue of extraction errors, we resort to error correction codes, with which our model achieves the maximum effective embedding rates over 4 bits per pixel. Finally, we verify that the proposed model outperforms current GAN-based steganographic schemes on two datasets and the undetectability is superior to traditional algorithms when the steganalyst cannot access model hyperparameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莽哥完成签到,获得积分10
1秒前
YYYYYaaa发布了新的文献求助10
3秒前
4秒前
时泰完成签到,获得积分10
4秒前
5秒前
LILILI完成签到,获得积分10
5秒前
雪天的阳完成签到 ,获得积分10
10秒前
yumb发布了新的文献求助10
10秒前
11秒前
12秒前
asdfgh完成签到,获得积分10
12秒前
13秒前
社牛小柯完成签到,获得积分10
14秒前
14秒前
zhang26xian完成签到,获得积分10
16秒前
贲从蓉发布了新的文献求助10
16秒前
周周完成签到,获得积分10
17秒前
17秒前
锣大炮完成签到,获得积分10
17秒前
zchenglin完成签到,获得积分10
17秒前
17秒前
19秒前
19秒前
贲从蓉完成签到,获得积分10
21秒前
21秒前
上官若男应助木同人采纳,获得10
22秒前
psyche完成签到,获得积分10
23秒前
许自通完成签到,获得积分10
23秒前
深情安青应助洺全采纳,获得10
24秒前
高兴的幻柏完成签到 ,获得积分10
25秒前
冷酷夏旋发布了新的文献求助30
25秒前
多肽专家完成签到,获得积分10
27秒前
_ban发布了新的文献求助10
27秒前
穿堂风完成签到,获得积分10
27秒前
爱吃鸭锁骨完成签到,获得积分10
29秒前
kevin完成签到 ,获得积分10
29秒前
yumb完成签到,获得积分20
31秒前
科研通AI5应助ZHY采纳,获得80
31秒前
豆豆完成签到,获得积分10
31秒前
32秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805349
求助须知:如何正确求助?哪些是违规求助? 3350319
关于积分的说明 10348395
捐赠科研通 3066218
什么是DOI,文献DOI怎么找? 1683622
邀请新用户注册赠送积分活动 809099
科研通“疑难数据库(出版商)”最低求助积分说明 765225