Detecting Functionality-Specific Vulnerabilities via Retrieving Individual Functionality-Equivalent APIs in Open-Source Repositories

计算机科学 图形 卷积神经网络 可扩展性 人工智能 编码 边距(机器学习) 理论计算机科学 模式识别(心理学) 机器学习 生物化学 数据库 基因 化学
作者
Thomas Kipf,Max Welling
标识
DOI:10.4230/lipics.ecoop.2025.6
摘要

Functionality-specific vulnerabilities, which mainly occur in Application Programming Interfaces (APIs) with specific functionalities, are crucial for software developers to detect and avoid. When detecting individual functionality-specific vulnerabilities, the existing two categories of approaches are ineffective because they consider only the API bodies and are unable to handle diverse implementations of functionality-equivalent APIs. To effectively detect functionality-specific vulnerabilities, we propose APISS, the first approach to utilize API doc strings and signatures instead of API bodies. APISS first retrieves functionality-equivalent APIs for APIs with existing vulnerabilities and then migrates Proof-of-Concepts (PoCs) of the existing vulnerabilities for newly detected vulnerable APIs. To retrieve functionality-equivalent APIs, we leverage a Large Language Model for API embedding to improve the accuracy and address the effectiveness and scalability issues suffered by the existing approaches. To migrate PoCs of the existing vulnerabilities for newly detected vulnerable APIs, we design a semi-automatic schema to substantially reduce manual costs. We conduct a comprehensive evaluation to empirically compare APISS with four state-of-the-art approaches of detecting vulnerabilities and two state-of-the-art approaches of retrieving functionality-equivalent APIs. The evaluation subjects include 180 widely used Java repositories using 10 existing vulnerabilities, along with their PoCs. The results show that APISS effectively retrieves functionality-equivalent APIs, achieving a Top-1 Accuracy of 0.81 while the best of the baselines under comparison achieves only 0.55. APISS is highly efficient: the manual costs are within 10 minutes per vulnerability and the end-to-end runtime overhead of testing one candidate API is less than 2 hours. APISS detects 179 new vulnerabilities and receives 60 new CVE IDs, bringing high value to security practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
heyihao发布了新的文献求助30
2秒前
赫连烙完成签到,获得积分10
2秒前
略略略发布了新的文献求助10
3秒前
柏月完成签到,获得积分10
4秒前
展锋发布了新的文献求助10
4秒前
情怀应助小刘采纳,获得10
4秒前
酷波er应助吃不胖的阿吴采纳,获得10
5秒前
祖难破完成签到,获得积分10
5秒前
大个应助ldgsd采纳,获得10
6秒前
6秒前
研友_VZG7GZ应助小李采纳,获得10
7秒前
juan完成签到,获得积分10
7秒前
8秒前
8秒前
小青椒应助HXX采纳,获得30
8秒前
kk关闭了kk文献求助
9秒前
cc完成签到,获得积分10
10秒前
顾矜应助chi1采纳,获得10
10秒前
果冻呀发布了新的文献求助10
11秒前
yuilcl发布了新的文献求助10
11秒前
田様应助gaojun采纳,获得10
11秒前
12秒前
复杂惜霜发布了新的文献求助10
12秒前
书虫完成签到,获得积分10
13秒前
13秒前
JJ完成签到 ,获得积分20
13秒前
哆啦的空间站应助宝海青采纳,获得10
14秒前
nihao完成签到,获得积分10
15秒前
Ankher发布了新的文献求助30
15秒前
戏猫小萌关注了科研通微信公众号
17秒前
18秒前
18秒前
18秒前
俊逸的代曼完成签到,获得积分10
19秒前
linshiba_18发布了新的文献求助10
19秒前
李健的小迷弟应助jack采纳,获得10
19秒前
20秒前
20秒前
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308436
求助须知:如何正确求助?哪些是违规求助? 4453578
关于积分的说明 13857553
捐赠科研通 4341263
什么是DOI,文献DOI怎么找? 2383753
邀请新用户注册赠送积分活动 1378386
关于科研通互助平台的介绍 1346379