纤维发生
化学
纤维
细胞毒性
生物物理学
碳纳米管
淀粉样蛋白(真菌学)
硫黄素
五聚体
分子动力学
纳米技术
体外
生物化学
计算化学
材料科学
阿尔茨海默病
疾病
病理
生物
无机化学
医学
作者
Fufeng Liu,Wenjuan Wang,Jingcheng Sang,Longgang Jia,Fuping Lu
标识
DOI:10.1021/acschemneuro.8b00441
摘要
The fibrillogenesis of amyloid-β protein (Aβ) is considered a crucial factor in the pathogenesis of Alzheimer's disease (AD). Hence, inhibiting Aβ fibrillogenesis is regarded as the primary therapeutic strategy for the prevention and treatment of AD. However, the development of effective inhibitors against Aβ fibrillogenesis has faced significant challenges. Previous studies have shown that pristine single-walled carbon nanotubes (SWNTs) can inhibit fibrillogenesis of some amyloid proteins. However, the poor dispersibility of SWNTs in an aqueous environment greatly hinders their inhibitory efficacy. Here, we examined the inhibitory activity of hydroxylated SWNTs (SWNT-OH) on the aggregation and cytotoxicity of Aβ42 using thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), cellular viability assays, and molecular dynamics (MD) simulations. ThT and AFM results showed that SWNT-OH inhibits Aβ42 fibrillogenesis and disaggregates preformed amyloid fibrils in a dose-dependent manner. Furthermore, the ratio of hydroxyl groups in SWNT-OH is crucial for their effect against Aβ42 aggregation. SWNT-OH exerted cytoprotective effects against Aβ42 fibrillation-induced cytotoxicity. The results of free-energy decomposition studies based on MD simulations revealed that nonpolar interactions, and especially van der Waals forces, contributed most of the free energy of binding in the SWNT-OH-Aβ complex. Two regions of the Aβ pentamer were identified to interact with SWNT-OH, spanning H13-Q15 and V36-G38. The findings presented here will contribute to a comprehensive understanding of the inhibitory effect of hydroxylated nanoparticles against Aβ fibrillogenesis, which is critical for the search for more effective agents that can counteract amyloid-mediated pathologies.
科研通智能强力驱动
Strongly Powered by AbleSci AI