乏核燃料
核燃料循环
普雷克斯
混合氧化物燃料
核后处理
钚
钚-240
裂变产物
废物管理
核素
核燃料
锕系元素
钍燃料循环
环境科学
核能
燃尽
铀
核嬗变
放射性废物
核工程
放射化学
钚-239
化学
核化学
工程类
萃取(化学)
材料科学
裂变
核物理学
溶剂萃取
物理
冶金
中子
色谱法
作者
T. V. Maltseva,А. Shyshuta,S. Lukashyn
出处
期刊:Âderna ta radìacìjna bezpeka
[State Scientific and Technical Center for Nuclear and Radiation Safety]
日期:2019-03-12
卷期号: (1(81)): 52-57
标识
DOI:10.32918/nrs.2019.1(81).09
摘要
The paper is devoted to the history of development and the current state of technological and scientific advances in radiochemical reprocessing of spent nuclear fuel from water-cooled power reactors. Regarding spent nuclear fuel (SNF) of NPP power reactors, long-term energy security involves adopting a version of its radiochemical treatment, conditioning and recirculation. Recycling SNF is required for the implementation of a closed fuel cycle and the re-use of regeneration products as energy reactor fuels. The basis of modern technological schemes for the reprocessing of the spent nuclear fuel is the “Purex” process, developed since the 60s in the USA. The classic approach to the use of U and Pu nuclides contained in spent nuclear fuel is to separate them from fission products, re-enrich regenerated uranium and use plutonium for the production of mixed-oxide (MOX) fuel with depleted uranium. The modern reprocessing plants are able to deal with fuel with further increase of its main characteristics without significant changes in the initial project. In order to close the fuel cycle, it is needed to add the following technological steps: (1) removal of high-level and long-lived components and minor actinides; (2) return of actinides to the technological cycle; (3) safe disposal of unused components. Each of these areas is under investigation now. Several new promising multi-cycle hydrometallurgical processes based on the joint extraction of trivalent lanthanides and minor actinides with their subsequent separation have been developed. A number of promising materials is suggested to be potential matrices for the immobilization of high-level components of radioactive wastes. To improve the compatibility of fuel processing with the environment, non-aqueous technologies are being developed, for instance, pyro-chemical methods for the reprocessing of various types of highly active fuels based on metals, oxides, carbides, or nitrides. An important scientific and technological task under investigation is transmutation of actinides. The results of international large-scale experiments on the partitioning and transmutation of fuel with various minor actinides and long-lived fission products confirm the real possibility and expediency of closing the nuclear fuel cycle.
科研通智能强力驱动
Strongly Powered by AbleSci AI