材料科学
再分配(选举)
纳米技术
光电子学
法学
政治学
政治
作者
Zhihua Wang,Jie Xue,Dongmei Han,Fubo Gu
摘要
ZnO nanopyramids (NPys) with exposed crystal facets of {101̅1} were synthesized via a one-step solvothermal method, having a uniform size with a hexagonal edge length of ∼100 nm and a height of ∼200 nm. Technologies of XRD, TEM, HRTEM, Raman, PL, and XPS were used to characterize the morphological and structural properties of the products, while the corresponding gas sensing properties were determined by using ethanol as the target gas. For the overall goal of defect engineering, the effect of aging temperature on the gas sensing performance of the ZnO NPys was studied. The test results showed that, at the aging temperature of 300 °C, the gas sensing property has been improved to the best, with the fast response-recovery time and the excellent selectivity, because the ZnO300 has the most electron donors for absorbing the largest content of O2–. Model of defect redistribution was used to explicate the changing of the surface defects at different aging temperatures. The findings showed that, in addition to VO, Zni was the dominant defect of the {101̅1} crystal facet. The gas sensing performance of the ZnO NPys was determined by the contents of VO and Zni, with all of the defects redistributed on the surface. All of the results will be noticeable for the improvement of the sensing performance of materials with special crystal facet exposing.
科研通智能强力驱动
Strongly Powered by AbleSci AI