Cracking in-memory database index: A case study for Adaptive Radix Tree index

计算机科学 索引(排版) 根(腹足类) 树(集合论) 数据库索引 数据库 情报检索 搜索引擎索引 万维网 数学 植物 生物 数学分析
作者
Gang Wu,Yidong Song,Guodong Zhao,Wei Sun,Deqiang Han,Bo Qiao,Guoren Wang,Ye Yuan
出处
期刊:Information Systems [Elsevier BV]
卷期号:104: 101913-101913 被引量:1
标识
DOI:10.1016/j.is.2021.101913
摘要

Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structures for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed. This makes it possible to build up an ART index step by step with incessant queries, and hence avoids the poor instant availability of a complete index which is constructed once and for all, but is time consuming. Furthermore, updating a cracking ART index is considered as well. Extensive experiments show that the average initialization time of the ART cracker index is reduced by 75%, and the query response time gradually approaches the original ART algorithm with the coming queries. • In-memory database indexes have more extensive research and application space. • Database Cracking is used as a method applied to in-memory database indexes. • The algorithm has better performance advantages under random queries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高海龙完成签到 ,获得积分10
1秒前
令狐觅双完成签到,获得积分10
2秒前
2秒前
hans完成签到,获得积分10
2秒前
3秒前
3秒前
打打应助啦啦啦采纳,获得10
4秒前
xuanxuan发布了新的文献求助10
5秒前
dennisysz发布了新的文献求助10
6秒前
7秒前
尉迟苑博发布了新的文献求助10
9秒前
酷波er应助小茂采纳,获得10
12秒前
佳佳完成签到,获得积分10
13秒前
星火完成签到,获得积分10
14秒前
陆晓亦完成签到,获得积分10
14秒前
14秒前
脑洞疼应助fcgcgfcgf采纳,获得10
14秒前
xuanxuan完成签到,获得积分10
15秒前
16秒前
17秒前
听风飘逸发布了新的文献求助10
19秒前
Jasper应助科研通管家采纳,获得20
19秒前
19秒前
华仔应助科研通管家采纳,获得10
19秒前
情怀应助科研通管家采纳,获得10
20秒前
wanci应助科研通管家采纳,获得10
20秒前
丘比特应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
华仔应助科研通管家采纳,获得20
20秒前
SciGPT应助科研通管家采纳,获得30
20秒前
夕诙应助科研通管家采纳,获得30
20秒前
思源应助科研通管家采纳,获得10
20秒前
英姑应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
我是老大应助科研通管家采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
20秒前
赘婿应助CH采纳,获得10
21秒前
清仔发布了新的文献求助10
23秒前
23秒前
李逵完成签到,获得积分10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103