Research of Chinese intangible cultural heritage knowledge graph construction and attribute value extraction with graph attention network

图形 知识图 计算机科学 文化遗产 情报检索 知识管理 地理 理论计算机科学 考古
作者
Tao Fan,Hao Wang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (1): 102753-102753 被引量:19
标识
DOI:10.1016/j.ipm.2021.102753
摘要

• We construct a Chinese intangible cultural heritage (ICH) knowledge graph (KG). • We propose a general ICH KG construction framework. • We offer a novel ICH attribute value extraction (AVE) model. • We provide an ICH annotation method through distant supervision. • The proposed KG construction framework and AVE model can be used in other domains. The development of digital technology promotes the construction of the Intangible cultural heritage (ICH) database but the data is still unorganized and not linked well, which makes the public hard to master the overall knowledge of the ICH. An ICH knowledge graph (KG) can help the public to understand the ICH and facilitate the protection of the ICH. However, a general framework of ICH KG construction is lacking now. In this study, we take the Chinese ICH (nation-level) as an example and propose a framework to build a Chinese ICH KG combining multiple data sources from Baike and the official website, which can extend the scale of the KG. Besides, the data of ICH grows daily, requiring us to design an efficient model to extract the knowledge from the data to update the KG in time. The built KG is based on the triple 〈 entity, attribute, attribute value〉 and we introduce the attribute value extraction (AVE) task. However, the public Chinese ICH annotated AVE corpus is lacking. To solve that, we construct a Chinese ICH AVE corpus based on the Distant Supervision (DS) automatically rather than employing traditional manual annotation. Currently, AVE is usually seen as the sequence tagging task. In this paper, we take the ICH AVE as a node classification task and propose an AVE model BGC, combining the BiLSTM and graph attention network, which can fuse and utilize the word-level and character-level information by means of the ICH lexicon generated from the KG. We conduct extensive experiments and compare the proposed model with other state-of-the-art models. Experimental results show that the proposed model is of superiority.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qt完成签到,获得积分10
刚刚
邓佳鑫Alan应助洋桔梗采纳,获得30
2秒前
小章鱼完成签到,获得积分10
2秒前
3秒前
Serendipity完成签到,获得积分10
3秒前
4秒前
道友且慢发布了新的文献求助20
4秒前
精明的新蕾完成签到,获得积分10
4秒前
科研通AI5应助starry采纳,获得30
4秒前
严昌完成签到,获得积分20
4秒前
nm123完成签到,获得积分10
5秒前
6秒前
6秒前
怕黑念薇发布了新的文献求助10
6秒前
bc关闭了bc文献求助
6秒前
6秒前
wxd完成签到,获得积分10
7秒前
dild完成签到,获得积分10
7秒前
充电宝应助岩岩岩岩岩采纳,获得50
8秒前
9秒前
jinjun发布了新的文献求助10
9秒前
wxd发布了新的文献求助10
10秒前
科研通AI5应助GWZZ采纳,获得10
10秒前
ycy发布了新的文献求助10
10秒前
dild发布了新的文献求助10
10秒前
11秒前
haha发布了新的文献求助10
11秒前
雨香完成签到,获得积分10
11秒前
zxe发布了新的文献求助10
12秒前
12秒前
烂漫剑发布了新的文献求助10
12秒前
小姜发布了新的文献求助10
14秒前
怕黑念薇完成签到,获得积分10
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
猪猪hero应助科研通管家采纳,获得10
16秒前
北风应助科研通管家采纳,获得10
16秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819296
求助须知:如何正确求助?哪些是违规求助? 3362356
关于积分的说明 10416633
捐赠科研通 3080508
什么是DOI,文献DOI怎么找? 1694605
邀请新用户注册赠送积分活动 814703
科研通“疑难数据库(出版商)”最低求助积分说明 768388