亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gap-filling eddy covariance methane fluxes: Comparison of machine learning model predictions and uncertainties at FLUXNET-CH4 wetlands

涡度相关法 湿地 通量网 环境科学 机器学习 人工智能 气象学 计算机科学 生态系统 生态学 生物 物理
作者
Jeremy Irvin,Sharon Zhou,Gavin McNicol,Fred Lu,Vincent Liu,Etienne Fluet‐Chouinard,Zutao Ouyang,Sara Knox,Antje Lucas-Moffat,Carlo Trotta,Dario Papale,Domenico Vitale,Ivan Mammarella,Pavel Alekseychik,Mika Aurela,Anand Avati,Dennis Baldocchi,Sheel Bansal,Gil Bohrer,David I. Campbell
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:308-309: 108528-108528 被引量:81
标识
DOI:10.1016/j.agrformet.2021.108528
摘要

Time series of wetland methane fluxes measured by eddy covariance require gap-filling to estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging because of high variability and complex responses to multiple drivers. To date, there is no widely established gap-filling standard for wetland methane fluxes, with regards both to the best model algorithms and predictors. This study synthesizes results of different gap-filling methods systematically applied at 17 wetland sites spanning boreal to tropical regions and including all major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic artificial gap scenarios, 2) training and evaluating gap-filling models without overstating performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic uncertainty estimates. Performance is compared between a conventional method (marginal distribution sampling) and four machine learning algorithms. The conventional method achieved similar median performance as the machine learning models but was worse than the best machine learning models and relatively insensitive to predictor choices. Of the machine learning models, decision tree algorithms performed the best in cross-validation experiments, even with a baseline predictor set, and artificial neural networks showed comparable performance when using all predictors. Soil temperature was frequently the most important predictor whilst water table depth was important at sites with substantial water table fluctuations, highlighting the value of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning models were underestimated and we propose a method to calibrate uncertainties to observations. The python code for model development, evaluation, and uncertainty estimation is publicly available. This study outlines a modular and robust machine learning workflow and makes recommendations for, and evaluates an improved baseline of, methane gap-filling models that can be implemented in multi-site syntheses or standardized products from regional and global flux networks (e.g., FLUXNET).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟消云散完成签到,获得积分10
3秒前
11秒前
zch19970203发布了新的文献求助10
17秒前
良良丸完成签到 ,获得积分10
29秒前
34秒前
zch19970203完成签到,获得积分10
38秒前
40秒前
欣喜一一关注了科研通微信公众号
51秒前
1分钟前
1分钟前
淡淡菠萝完成签到 ,获得积分10
1分钟前
欣喜一一发布了新的文献求助10
1分钟前
1分钟前
002完成签到,获得积分10
1分钟前
bc举报长情的笑南求助涉嫌违规
2分钟前
2分钟前
小石头完成签到 ,获得积分10
2分钟前
001完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
左丘从安完成签到,获得积分10
4分钟前
4分钟前
难过鹤完成签到,获得积分10
4分钟前
5分钟前
难过鹤发布了新的文献求助10
5分钟前
花陵完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
田様应助难过鹤采纳,获得10
6分钟前
7分钟前
喜悦的香之完成签到 ,获得积分10
7分钟前
在水一方应助科研通管家采纳,获得10
7分钟前
只爱吃肠粉完成签到,获得积分10
7分钟前
心想事成完成签到 ,获得积分10
7分钟前
传奇3应助Hazel采纳,获得30
7分钟前
顷梦完成签到,获得积分10
8分钟前
Kevin发布了新的文献求助100
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798486
求助须知:如何正确求助?哪些是违规求助? 3343966
关于积分的说明 10318181
捐赠科研通 3060562
什么是DOI,文献DOI怎么找? 1679670
邀请新用户注册赠送积分活动 806731
科研通“疑难数据库(出版商)”最低求助积分说明 763323