已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry

心肌灌注成像 人工智能 接收机工作特性 单光子发射计算机断层摄影术 机器学习 计算机科学 灌注扫描 狼牙棒 医学 核医学 灌注 统计 数学 放射科 内科学 传统PCI 心肌梗塞
作者
Richard Ríos,Robert J.H. Miller,Lien-Hsin Hu,Yuka Otaki,Ananya Singh,Márcio A. Diniz,Tali Sharir,Andrew J. Einstein,Mathews B. Fish,Terrence D. Ruddy,Philipp A. Kaufmann,Albert J. Sinusas,Edward J. Miller,Timothy M. Bateman,Sharmila Dorbala,Marcelo F. DiCarli,Serge Van Kriekinge,Paul Kavanagh,Tejas Parekh,Joanna X. Liang
出处
期刊:Cardiovascular Research [Oxford University Press]
卷期号:118 (9): 2152-2164 被引量:38
标识
DOI:10.1093/cvr/cvab236
摘要

Abstract Aims Optimal risk stratification with machine learning (ML) from myocardial perfusion imaging (MPI) includes both clinical and imaging data. While most imaging variables can be derived automatically, clinical variables require manual collection, which is time-consuming and prone to error. We determined the fewest manually input and imaging variables required to maintain the prognostic accuracy for major adverse cardiac events (MACE) in patients undergoing a single-photon emission computed tomography (SPECT) MPI. Methods and results This study included 20 414 patients from the multicentre REFINE SPECT registry and 2984 from the University of Calgary for training and external testing of the ML models, respectively. ML models were trained using all variables (ML-All) and all image-derived variables (including age and sex, ML-Image). Next, ML models were sequentially trained by incrementally adding manually input and imaging variables to baseline ML models based on their importance ranking. The fewest variables were determined as the ML models (ML-Reduced, ML-Minimum, and ML-Image-Reduced) that achieved comparable prognostic performance to ML-All and ML-Image. Prognostic accuracy of the ML models was compared with visual diagnosis, stress total perfusion deficit (TPD), and traditional multivariable models using area under the receiver-operating characteristic curve (AUC). ML-Minimum (AUC 0.798) obtained comparable prognostic accuracy to ML-All (AUC 0.799, P = 0.19) by including 12 of 40 manually input variables and 11 of 58 imaging variables. ML-Reduced achieved comparable accuracy (AUC 0.796) with a reduced set of manually input variables and all imaging variables. In external validation, the ML models also obtained comparable or higher prognostic accuracy than traditional multivariable models. Conclusion Reduced ML models, including a minimum set of manually collected or imaging variables, achieved slightly lower accuracy compared to a full ML model but outperformed standard interpretation methods and risk models. ML models with fewer collected variables may be more practical for clinical implementation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隔壁王湿服关注了科研通微信公众号
2秒前
菜菜完成签到 ,获得积分10
3秒前
欧阳小枫完成签到 ,获得积分10
3秒前
toutou应助宁过儿采纳,获得20
5秒前
科研通AI2S应助serena采纳,获得10
6秒前
科研通AI6.1应助闪闪的素采纳,获得10
14秒前
今后应助hunajx采纳,获得10
15秒前
英俊的未来完成签到 ,获得积分10
16秒前
17秒前
26秒前
lili完成签到 ,获得积分10
32秒前
mak1ma发布了新的文献求助10
33秒前
酷酷的涵蕾完成签到 ,获得积分10
33秒前
34秒前
犹豫梦菡完成签到 ,获得积分10
37秒前
尊敬的凝丹完成签到 ,获得积分10
38秒前
40秒前
儒雅完成签到 ,获得积分10
41秒前
41秒前
45秒前
46秒前
无敌的兔子宇宙完成签到,获得积分10
46秒前
50秒前
muuuu完成签到,获得积分10
51秒前
清脆的海亦完成签到,获得积分10
52秒前
大模型应助22222采纳,获得10
57秒前
李四发布了新的文献求助10
57秒前
善学以致用应助默默采纳,获得10
59秒前
mak1ma完成签到,获得积分20
1分钟前
Aha完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
风行域完成签到,获得积分10
1分钟前
22222发布了新的文献求助10
1分钟前
1分钟前
double_x发布了新的文献求助10
1分钟前
linyanling关注了科研通微信公众号
1分钟前
烟花应助pay采纳,获得10
1分钟前
默默发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5754539
求助须知:如何正确求助?哪些是违规求助? 5487532
关于积分的说明 15380217
捐赠科研通 4893123
什么是DOI,文献DOI怎么找? 2631743
邀请新用户注册赠送积分活动 1579677
关于科研通互助平台的介绍 1535399