亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dealiased seismic data interpolation using a deep-learning-based prediction-error filter

计算机科学 插值(计算机图形学) 人工神经网络 深度学习 一般化 人工智能 卷积神经网络 滤波器(信号处理) 可解释性 数据集 机器学习 数据挖掘 算法 模式识别(心理学) 数学 运动(物理) 数学分析 计算机视觉
作者
Wenqian Fang,Lihua Fu,Shaoyong Liu,Hongwei Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): V317-V328 被引量:25
标识
DOI:10.1190/geo2020-0487.1
摘要

Deep-learning (DL) technology has emerged as a new approach for seismic data interpolation. DL-based methods can automatically learn the mapping between regularly subsampled and complete data from a large training data set. Subsequently, the trained network can be used to directly interpolate new data. Therefore, compared with traditional methods, DL-based methods reduce the manual workload and render the interpolation process efficient and automatic by avoiding the selection of hyperparameters. However, two limitations of DL-based approaches exist. First, the generalization performance of the neural network is inadequate when processing new data with a different structure compared to the training data. Second, the interpretation of the trained networks is very difficult. To overcome these limitations, we have combined the deep neural network and classic prediction-error filter (PEF) methods, proposing a novel seismic data dealiased interpolation framework called prediction-error filters network (PEFNet). The PEFNet designs convolutional neural networks to learn the relationship between the subsampled data and the PEFs. Thus, the filters estimated by the trained network are used for the recovery of missing traces. The learning of filters enables the network to better extract the local dip of seismic data and has a good generalization ability. In addition, PEFNet has the same interpretability as traditional PEF-based methods. The applicability and the effectiveness of our method are demonstrated here by synthetic and field data examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛八先生完成签到,获得积分10
1秒前
Linden_bd完成签到 ,获得积分10
4秒前
17秒前
无花果应助hyhyhyhy采纳,获得10
21秒前
23秒前
传奇3应助陆柒捌采纳,获得10
23秒前
29秒前
30秒前
31秒前
Party完成签到 ,获得积分10
33秒前
陆柒捌发布了新的文献求助10
36秒前
hyhyhyhy发布了新的文献求助10
36秒前
42秒前
陆柒捌完成签到,获得积分10
42秒前
璇别发布了新的文献求助20
43秒前
斯文败类应助getgetting采纳,获得10
47秒前
完美世界应助Dash采纳,获得10
47秒前
Benhnhk21完成签到,获得积分10
57秒前
小冯完成签到 ,获得积分10
1分钟前
iceink发布了新的文献求助200
1分钟前
1分钟前
科研通AI2S应助璇别采纳,获得10
1分钟前
JamesPei应助threewei采纳,获得10
1分钟前
2分钟前
threewei发布了新的文献求助10
2分钟前
MchemG完成签到,获得积分0
2分钟前
汉堡包应助天真咖啡豆采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
getgetting发布了新的文献求助10
3分钟前
flytowm发布了新的文献求助10
3分钟前
3分钟前
bc应助科研通管家采纳,获得20
3分钟前
SciGPT应助科研通管家采纳,获得10
3分钟前
3分钟前
传奇3应助getgetting采纳,获得10
3分钟前
孤独的大灰狼完成签到 ,获得积分10
3分钟前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800920
求助须知:如何正确求助?哪些是违规求助? 3346445
关于积分的说明 10329356
捐赠科研通 3062993
什么是DOI,文献DOI怎么找? 1681307
邀请新用户注册赠送积分活动 807463
科研通“疑难数据库(出版商)”最低求助积分说明 763714