亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dealiased seismic data interpolation using a deep-learning-based prediction-error filter

计算机科学 插值(计算机图形学) 人工神经网络 深度学习 一般化 人工智能 卷积神经网络 滤波器(信号处理) 可解释性 数据集 机器学习 数据挖掘 算法 模式识别(心理学) 数学 运动(物理) 数学分析 计算机视觉
作者
Wenqian Fang,Lihua Fu,Shaoyong Liu,Hongwei Li
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): V317-V328 被引量:25
标识
DOI:10.1190/geo2020-0487.1
摘要

Deep-learning (DL) technology has emerged as a new approach for seismic data interpolation. DL-based methods can automatically learn the mapping between regularly subsampled and complete data from a large training data set. Subsequently, the trained network can be used to directly interpolate new data. Therefore, compared with traditional methods, DL-based methods reduce the manual workload and render the interpolation process efficient and automatic by avoiding the selection of hyperparameters. However, two limitations of DL-based approaches exist. First, the generalization performance of the neural network is inadequate when processing new data with a different structure compared to the training data. Second, the interpretation of the trained networks is very difficult. To overcome these limitations, we have combined the deep neural network and classic prediction-error filter (PEF) methods, proposing a novel seismic data dealiased interpolation framework called prediction-error filters network (PEFNet). The PEFNet designs convolutional neural networks to learn the relationship between the subsampled data and the PEFs. Thus, the filters estimated by the trained network are used for the recovery of missing traces. The learning of filters enables the network to better extract the local dip of seismic data and has a good generalization ability. In addition, PEFNet has the same interpretability as traditional PEF-based methods. The applicability and the effectiveness of our method are demonstrated here by synthetic and field data examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得20
1分钟前
默默雪旋完成签到 ,获得积分10
2分钟前
2分钟前
Virtual举报kkvv求助涉嫌违规
2分钟前
ZYP应助UWUTUYU采纳,获得10
2分钟前
Virtual举报真君山山长求助涉嫌违规
2分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得50
3分钟前
Virtual举报永不T歇求助涉嫌违规
3分钟前
甜蜜的绿蝶应助gszy1975采纳,获得10
3分钟前
4分钟前
d22110652发布了新的文献求助10
4分钟前
4分钟前
hmhu完成签到,获得积分10
4分钟前
hmhu发布了新的文献求助10
4分钟前
馆长应助科研通管家采纳,获得20
5分钟前
YifanWang应助科研通管家采纳,获得10
5分钟前
6分钟前
333完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
7分钟前
d22110652发布了新的文献求助10
7分钟前
YifanWang应助科研通管家采纳,获得20
7分钟前
YifanWang应助科研通管家采纳,获得20
7分钟前
馆长应助科研通管家采纳,获得30
7分钟前
Hello应助虚幻心锁采纳,获得10
8分钟前
8分钟前
8分钟前
gszy1975完成签到,获得积分10
8分钟前
虚幻心锁发布了新的文献求助10
8分钟前
Virtual举报花海求助涉嫌违规
8分钟前
8分钟前
8分钟前
8分钟前
9分钟前
YifanWang应助科研通管家采纳,获得10
9分钟前
YifanWang应助科研通管家采纳,获得10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498583
求助须知:如何正确求助?哪些是违规求助? 3949652
关于积分的说明 12244684
捐赠科研通 3607992
什么是DOI,文献DOI怎么找? 1984773
邀请新用户注册赠送积分活动 1021163
科研通“疑难数据库(出版商)”最低求助积分说明 913582