Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI

判别式 人工智能 计算机科学 模式识别(心理学) 深度学习 机器学习
作者
Wenyong Zhu,Liang Sun,Jiashuang Huang,Liangxiu Han,Daoqiang Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:40 (9): 2354-2366 被引量:220
标识
DOI:10.1109/tmi.2021.3077079
摘要

Structural magnetic resonance imaging (sMRI) is widely used for the brain neurological disease diagnosis, which could reflect the variations of brain. However, due to the local brain atrophy, only a few regions in sMRI scans have obvious structural changes, which are highly correlative with pathological features. Hence, the key challenge of sMRI-based brain disease diagnosis is to enhance the identification of discriminative features. To address this issue, we propose a dual attention multi-instance deep learning network (DA-MIDL) for the early diagnosis of Alzheimer's disease (AD) and its prodromal stage mild cognitive impairment (MCI). Specifically, DA-MIDL consists of three primary components: 1) the Patch-Nets with spatial attention blocks for extracting discriminative features within each sMRI patch whilst enhancing the features of abnormally changed micro-structures in the cerebrum, 2) an attention multi-instance learning (MIL) pooling operation for balancing the relative contribution of each patch and yield a global different weighted representation for the whole brain structure, and 3) an attention-aware global classifier for further learning the integral features and making the AD-related classification decisions. Our proposed DA-MIDL model is evaluated on the baseline sMRI scans of 1689 subjects from two independent datasets (i.e., ADNI and AIBL). The experimental results show that our DA-MIDL model can identify discriminative pathological locations and achieve better classification performance in terms of accuracy and generalizability, compared with several state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Howard完成签到,获得积分10
1秒前
复杂的蛋挞完成签到 ,获得积分10
3秒前
xiaoxin发布了新的文献求助10
3秒前
大聪明完成签到 ,获得积分10
3秒前
野猪完成签到,获得积分10
3秒前
Yuuka完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
4秒前
5秒前
打打应助是我呀吼采纳,获得10
6秒前
Journey发布了新的文献求助10
6秒前
科研通AI2S应助YIDAN采纳,获得10
6秒前
共享精神应助xiaoxin采纳,获得10
8秒前
浮游应助瓦学弟的妈妈采纳,获得10
8秒前
Magic发布了新的文献求助10
8秒前
森山发布了新的文献求助10
9秒前
张子陌发布了新的文献求助10
9秒前
Anderson732发布了新的文献求助10
10秒前
我是第一名完成签到,获得积分10
10秒前
14秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
香蕉觅云应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得30
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
顾矜应助科研通管家采纳,获得30
16秒前
Anima应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得40
16秒前
所所应助科研通管家采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298080
求助须知:如何正确求助?哪些是违规求助? 4446756
关于积分的说明 13840225
捐赠科研通 4331934
什么是DOI,文献DOI怎么找? 2377972
邀请新用户注册赠送积分活动 1373239
关于科研通互助平台的介绍 1338833