Predictive geologic mapping from geophysical data using self-organizing maps: A case study from Baie Verte, Newfoundland, Canada

聚类分析 地质图 自组织映射 地质学 数据挖掘 地质调查 计算机科学 地球物理学 人工智能 地貌学
作者
Angela Carter-McAuslan,Colin G. Farquharson
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:86 (4): B249-B264 被引量:5
标识
DOI:10.1190/geo2020-0756.1
摘要

Self-organizing maps (SOMs) are a type of unsupervised artificial neural networks clustering tool. SOMs are used to cluster large multivariate data sets. They can identify patterns and trends in the geophysical maps of an area and generate proxy geology maps, known as remote predictive mapping. We have applied SOMs to magnetic, radiometric, and gravity data sets compiled from multiple modern and legacy data sources over the Baie Verte Peninsula, Newfoundland, Canada. The regional and local geologic maps available for this area and knowledge from numerous geologic studies has enabled the accuracy of SOM-based predictive mapping to be assessed. Proxy geology maps generated by primary clustering directly from the SOMs and secondary clustering using a k-means approach reproduced many geologic units identified by previous traditional geologic mapping. Of the combinations of data sets tested, the combination of magnetic data, primary radiometric data and their ratios, and Bouguer gravity data gave the best results. We found that using reduced-to-the-pole residual intensity or using the analytic signal as the magnetic data were equally useful. The SOM process was unaffected by gaps in the coverage of some of the data sets. The SOM results could be used as input into k-means clustering because this method requires no gaps in the data. The subsequent k-means clustering resulted in more meaningful proxy geology maps than were created by the SOM alone. In regions where the geology is poorly known, these proxy maps can be useful in targeting where traditional, on-the-ground geologic mapping would be most beneficial, which can be especially useful in parts of the world where access is difficult and expensive.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
曲初雪完成签到,获得积分10
刚刚
紫皇发布了新的文献求助10
1秒前
乐乐应助yangxinyu采纳,获得10
1秒前
小蘑菇应助噜噜采纳,获得10
1秒前
天真的嚓茶完成签到,获得积分10
2秒前
今后应助wd采纳,获得10
3秒前
科研通AI5应助Li采纳,获得10
4秒前
汉堡包应助小郭采纳,获得30
4秒前
haoooooooooooooo完成签到,获得积分10
5秒前
6秒前
领导范儿应助Jiachenchen采纳,获得10
9秒前
momo完成签到,获得积分20
9秒前
11秒前
给我好好读书完成签到,获得积分10
11秒前
刘明莹发布了新的文献求助10
12秒前
留胡子完成签到,获得积分10
12秒前
15秒前
李真完成签到 ,获得积分10
16秒前
16秒前
Jiachenchen完成签到,获得积分10
16秒前
畅快谷秋完成签到,获得积分10
16秒前
丘比特应助留胡子采纳,获得10
20秒前
勤劳涵山发布了新的文献求助10
20秒前
义气钻石完成签到,获得积分10
24秒前
24秒前
Thien应助锦云采纳,获得10
25秒前
hjx完成签到 ,获得积分10
27秒前
wd完成签到,获得积分20
28秒前
wb发布了新的文献求助100
30秒前
wancy完成签到 ,获得积分10
34秒前
dax大雄完成签到 ,获得积分10
35秒前
所所应助紫皇采纳,获得10
38秒前
鹿梨完成签到 ,获得积分10
38秒前
linda给linda的求助进行了留言
41秒前
科研通AI5应助jjj采纳,获得30
42秒前
无花果应助王得胜采纳,获得10
43秒前
fgd发布了新的文献求助100
45秒前
wanci应助李真采纳,获得10
45秒前
wb完成签到,获得积分10
47秒前
科研通AI5应助巴达天使采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236658
捐赠科研通 3043569
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119