芝麻酚
内科学
内分泌学
医学
化学
生物化学
抗氧化剂
作者
Yang Yang,Yuan Qu,Xiaoqiang Lv,Ruijin Zhao,Jing Yu,Suying Hu,Jingqi Kang,Yaling Zhang,Ye Gong,Tingting Cui,Xin Zhang,Yaping Yan
出处
期刊:Food & Function
[Royal Society of Chemistry]
日期:2021-01-01
卷期号:12 (19): 9347-9359
被引量:14
摘要
Sesamol, a major ingredient in sesame seeds (Sesamum indicum L.) and its oil, is considered a powerful functional food ingredient. However, few studies have investigated its effects on high-fat, high carbohydrate and high-cholesterol (HF-HCC) diet-induced nonalcoholic steatohepatitis (NASH) complicated with atherosclerosis. The present study elucidates the protective effects of sesamol against NASH and atherosclerosis in HF-HCC diet-fed rats. Sprague-Dawley rats were supplemented with or without sesamol in drinking water (0.05 mg mL-1, 0.1 mg mL-1 and 0.2 mg mL-1) from the beginning to end. At the end of the experiment, sesamol supplementation suppressed HF-HCC diet-induced body weight gain and increased absolute liver and adipose tissue weights in rats. Serum biochemical analyses showed that sesamol supplementation improved HF-HCC diet-induced metabolism disorders and damaged vascular endothelial function. Histological examinations displayed that dietary sesamol not only alleviated hepatic balloon degeneration, steatosis, inflammation and fibrosis, but also mitigated lipid accumulation and fibrous elements in the aorta arch in HF-HCC diet-fed rats. In addition, sesamol supplementation inhibited hepatic NOD-like receptor protein 3 (NLRP3) expression and ERS-IRE1 signaling pathway activation. Moreover, sesamol treatment decreased uric acid levels both in serum and the liver by its effect on the inhibition of xanthine oxidase (XO) activity and/or its expression, which might be closely associated with the inhibitions of NLRP3 expression and ERS-IRE1 signaling pathway activation in HF-HCC diet-fed rats. These findings demonstrated that sesamol alleviated NASH and atherosclerosis in HF-HCC diet-fed rats, and may be a potent dietary supplement for protection against these diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI