Porous core–shell CoMn2O4 microspheres as anode of lithium ion battery with excellent performances and their conversion reaction mechanism investigated by XAFS

X射线吸收精细结构 阳极 氧烷 法拉第效率 材料科学 电解质 化学工程 扩展X射线吸收精细结构 电化学 电极 分析化学(期刊) 吸收光谱法 化学 谱线 光谱学 量子力学 天文 色谱法 物理 工程类 物理化学
作者
Hang Su,Yue-Feng Xu,Shigang Shen,Jianqiang Wang,Jun‐Tao Li,Ling Huang,Shi‐Gang Sun
出处
期刊:Journal of Energy Chemistry [Elsevier BV]
卷期号:27 (6): 1637-1643 被引量:24
标识
DOI:10.1016/j.jechem.2018.04.009
摘要

Porous core–shell CoMn2O4 microspheres of ca. 3–5 μm in diameter were synthesized and served as anode of lithium ion battery. Results demonstrate that the as-synthesized CoMn2O4 materials exhibit excellent electrochemical properties. The CoMn2O4 anode can deliver a large capacity of 1070 mAh g–1 in the first discharge, a reversible capacity of 500 mAh g–1 after 100 cycles with a coulombic efficiency of 98.5% at a charge–discharge current density of 200 mA g–1, and a specific capacity of 385 mAh g–1 at a much higher charge-discharge current density of 1600 mA g–1. Synchrotron X–ray absorption fine structure (XAFS) techniques were applied to investigate the conversion reaction mechanism of the CoMn2O4 anode. The X–ray absorption near edge structure (XANES) spectra revealed that, in the first discharge–charge cycle, Co and Mn in CoMn2O4 were reduced to metallic Co and Mn when the electrode was discharged to 0.01 V, while they were oxidized respectively to CoO and MnO when the electrode was charged to 3.0 V. Experiments of both XANES and extended X–ray absorption fine structure (EXAFS) revealed that neither valence evolution nor phase transition of the porous core–shell CoMn2O4 microspheres could happen in the discharge plateau from 0.8 to 0.6 V, which demonstrates the formation of solid electrolyte interface (SEI) on the anode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
爱吃猫的鱼完成签到 ,获得积分10
2秒前
深情海秋完成签到,获得积分10
3秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
李爱国应助科研通管家采纳,获得10
4秒前
无花果应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
丘比特应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
充电宝应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得10
5秒前
Stanford发布了新的文献求助10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
星辰大海应助科研通管家采纳,获得30
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
Hello应助纷扬采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得30
5秒前
bc应助腼腆的立诚采纳,获得10
5秒前
情怀应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得30
5秒前
5秒前
weishao发布了新的文献求助10
6秒前
cnmkyt完成签到,获得积分20
7秒前
竹马子发布了新的文献求助10
7秒前
葳葳发布了新的文献求助10
8秒前
bc应助Gakay采纳,获得10
10秒前
科研通AI5应助天真琳采纳,获得10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777790
求助须知:如何正确求助?哪些是违规求助? 3323297
关于积分的说明 10213693
捐赠科研通 3038552
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275