Alzheimer Disease and Behavioral Variant Frontotemporal Dementia: Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis.

萎缩 痴呆 疾病 后皮质萎缩 神经影像学 阿尔茨海默病 进行性核上麻痹 脑萎缩
作者
Christiane Möller,Yolande A.L. Pijnenburg,Wiesje M. van der Flier,Adriaan Versteeg,Betty M. Tijms,Jan C. de Munck,Anne Hafkemeijer,Serge A.R.B. Rombouts,Jeroen van der Grond,John C. van Swieten,Elise G.P. Dopper,Philip Scheltens,Frederik Barkhof,Hugo Vrenken,Alle Meije Wink
出处
期刊:Radiology [Radiological Society of North America]
卷期号:279 (3): 838-848 被引量:48
标识
DOI:10.1148/radiol.2015150220
摘要

Purpose To investigate the diagnostic accuracy of an image-based classifier to distinguish between Alzheimer disease (AD) and behavioral variant frontotemporal dementia (bvFTD) in individual patients by using gray matter (GM) density maps computed from standard T1-weighted structural images obtained with multiple imagers and with independent training and prediction data. Materials and Methods The local institutional review board approved the study. Eighty-four patients with AD, 51 patients with bvFTD, and 94 control subjects were divided into independent training (n = 115) and prediction (n = 114) sets with identical diagnosis and imager type distributions. Training of a support vector machine (SVM) classifier used diagnostic status and GM density maps and produced voxelwise discrimination maps. Discriminant function analysis was used to estimate suitability of the extracted weights for single-subject classification in the prediction set. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for image-based classifiers and neuropsychological z scores. Results Training accuracy of the SVM was 85% for patients with AD versus control subjects, 72% for patients with bvFTD versus control subjects, and 79% for patients with AD versus patients with bvFTD (P ≤ .029). Single-subject diagnosis in the prediction set when using the discrimination maps yielded accuracies of 88% for patients with AD versus control subjects, 85% for patients with bvFTD versus control subjects, and 82% for patients with AD versus patients with bvFTD, with a good to excellent AUC (range, 0.81-0.95; P ≤ .001). Machine learning-based categorization of AD versus bvFTD based on GM density maps outperforms classification based on neuropsychological test results. Conclusion The SVM can be used in single-subject discrimination and can help the clinician arrive at a diagnosis. The SVM can be used to distinguish disease-specific GM patterns in patients with AD and those with bvFTD as compared with normal aging by using common T1-weighted structural MR imaging. (©) RSNA, 2015.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助光亮的代云采纳,获得10
1秒前
FashionBoy应助明天采纳,获得10
1秒前
1秒前
2秒前
2秒前
科研通AI5应助LiAlan采纳,获得10
2秒前
刘能完成签到,获得积分10
3秒前
zczczc完成签到,获得积分10
4秒前
lierikafei发布了新的文献求助10
4秒前
xjp发布了新的文献求助10
4秒前
4秒前
hdbys发布了新的文献求助20
5秒前
MrTStar完成签到 ,获得积分10
5秒前
皮皮团完成签到 ,获得积分10
6秒前
也曦发布了新的文献求助10
7秒前
大模型应助kangnakangna采纳,获得10
7秒前
英俊的铭应助火星天采纳,获得10
7秒前
张聪发布了新的文献求助20
7秒前
SciGPT应助123采纳,获得10
8秒前
阿星发布了新的文献求助10
8秒前
8秒前
理由多多发布了新的文献求助20
9秒前
10秒前
10秒前
suicone完成签到,获得积分10
10秒前
miao发布了新的文献求助20
11秒前
赘婿应助丁宇卓采纳,获得10
11秒前
tjzhaoll发布了新的文献求助10
11秒前
研友_VZG7GZ应助ldh采纳,获得30
11秒前
12秒前
思源应助小怪兽采纳,获得10
12秒前
小胖卷毛完成签到,获得积分10
12秒前
13秒前
英俊的铭应助xjp采纳,获得10
13秒前
YDY完成签到,获得积分10
13秒前
cherish发布了新的文献求助10
13秒前
顺利毕业完成签到,获得积分20
14秒前
14秒前
灰灰成长中完成签到,获得积分10
15秒前
小丽酱完成签到,获得积分20
16秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806711
求助须知:如何正确求助?哪些是违规求助? 3351419
关于积分的说明 10354020
捐赠科研通 3067233
什么是DOI,文献DOI怎么找? 1684428
邀请新用户注册赠送积分活动 809655
科研通“疑难数据库(出版商)”最低求助积分说明 765568