亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data

人工神经网络 计算机科学 变量(数学) 相似性(几何) 人工智能 机器学习 黑匣子 原始数据 数据挖掘 生态学 数学 生物 图像(数学) 数学分析 程序设计语言
作者
Julian D. Olden,Michael K. Joy,Russell G. Death
出处
期刊:Ecological Modelling [Elsevier BV]
卷期号:178 (3-4): 389-397 被引量:846
标识
DOI:10.1016/j.ecolmodel.2004.03.013
摘要

Artificial neural networks (ANNs) are receiving greater attention in the ecological sciences as a powerful statistical modeling technique; however, they have also been labeled a “black box” because they are believed to provide little explanatory insight into the contributions of the independent variables in the prediction process. A recent paper published in Ecological Modelling [Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model. 160 (2003) 249–264] addressed this concern by providing a comprehensive comparison of eight different methodologies for estimating variable importance in neural networks that are commonly used in ecology. Unfortunately, comparisons of the different methodologies were based on an empirical dataset, which precludes the ability to establish generalizations regarding the true accuracy and precision of the different approaches because the true importance of the variables is unknown. Here, we provide a more appropriate comparison of the different methodologies by using Monte Carlo simulations with data exhibiting defined (and consequently known) numeric relationships. Our results show that a Connection Weight Approach that uses raw input-hidden and hidden-output connection weights in the neural network provides the best methodology for accurately quantifying variable importance and should be favored over the other approaches commonly used in the ecological literature. Average similarity between true and estimated ranked variable importance using this approach was 0.92, whereas, similarity coefficients ranged between 0.28 and 0.74 for the other approaches. Furthermore, the Connection Weight Approach was the only method that consistently identified the correct ranked importance of all predictor variables, whereas, the other methods either only identified the first few important variables in the network or no variables at all. The most notably result was that Garson’s Algorithm was the poorest performing approach, yet is the most commonly used in the ecological literature. In conclusion, this study provides a robust comparison of different methodologies for assessing variable importance in neural networks that can be generalized to other data and from which valid recommendations can be made for future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Virtual应助科研通管家采纳,获得20
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
sino-ft发布了新的文献求助10
15秒前
17秒前
黄辉冯发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
47秒前
51秒前
Akim应助黄辉冯采纳,获得10
1分钟前
1分钟前
黄辉冯发布了新的文献求助10
1分钟前
深情安青应助科研通管家采纳,获得30
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
ding应助黄辉冯采纳,获得10
2分钟前
2分钟前
黄辉冯发布了新的文献求助10
2分钟前
zyjsunye完成签到 ,获得积分0
2分钟前
lang完成签到,获得积分10
3分钟前
光合作用完成签到,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
Jasper应助科研通管家采纳,获得10
4分钟前
共享精神应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得50
4分钟前
4分钟前
orixero应助leanne采纳,获得10
4分钟前
4分钟前
4分钟前
leanne发布了新的文献求助10
4分钟前
LMY完成签到 ,获得积分10
4分钟前
4分钟前
CipherSage应助小兔子采纳,获得30
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256115
求助须知:如何正确求助?哪些是违规求助? 3788725
关于积分的说明 11888785
捐赠科研通 3438362
什么是DOI,文献DOI怎么找? 1886902
邀请新用户注册赠送积分活动 938071
科研通“疑难数据库(出版商)”最低求助积分说明 843711