材料科学
摩擦学
田口方法
扫描电子显微镜
复合材料
粉末冶金
润滑
粒子(生态学)
铜
正交数组
基质(化学分析)
合金
粒径
冶金
微观结构
海洋学
地质学
物理化学
化学
作者
Yusuf Şahin,Keri̇m Emre Öksüz
出处
期刊:MP MATERIALPRUEFUNG - MP MATERIALS TESTING
[De Gruyter]
日期:2016-04-22
卷期号:58 (5): 453-461
被引量:6
摘要
Abstract There are many technical applications in which wear is a critical issue. Copper can be filled with particulate materials to enhance the tribological behavior, mechanical and physical properties as well. Copper matrix containing 10 vol.-% Al 2 O 3 and B 4 C particles were produced using the powder metallurgy method and their dry wear behavior was investigated at different sliding conditions against a hardened alloy steel counterface using Taguchi technique. Four control factors like lubrication, load, sliding distance and hardness were designed in a L 18 factorial orthogonal array for the experiments to investigate the wear behavior of the metal matrix composites. Moreover, a correlation derived from the results of Taguchi experimental design was proposed, resulting in a predictive equation for estimation of these properties. The experimental results showed that the weight loss was highly influenced by the lubrication factor, followed by the load factor. However, these were then followed by hardness and sliding distance. The estimated weight loss was calculated and a good agreement was observed between the predicted and actual weight loss at a confidence level of 90%. The wear resistance was significantly better for B 4 C particle-reinforced composites than that for the Al 2 O 3 particle-reinforced composites. Moreover, the results were approved by scanning electron microscope micrographs of worn surfaces of the samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI