Responsible artificial intelligence in agriculture requires systemic understanding of risks and externalities

农业 粮食安全 风险分析(工程) 意外后果 业务 计算机科学 环境资源管理 经济 生态学 政治学 生物 法学
作者
Asaf Tzachor,Medha Devare,B. R. King,Shahar Avin,Seán Ó hÉigeartaigh
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (2): 104-109 被引量:107
标识
DOI:10.1038/s42256-022-00440-4
摘要

Global agriculture is poised to benefit from the rapid advance and diffusion of artificial intelligence (AI) technologies. AI in agriculture could improve crop management and agricultural productivity through plant phenotyping, rapid diagnosis of plant disease, efficient application of agrochemicals and assistance for growers with location-relevant agronomic advice. However, the ramifications of machine learning (ML) models, expert systems and autonomous machines for farms, farmers and food security are poorly understood and under-appreciated. Here, we consider systemic risk factors of AI in agriculture. Namely, we review risks relating to interoperability, reliability and relevance of agricultural data, unintended socio-ecological consequences resulting from ML models optimized for yields, and safety and security concerns associated with deployment of ML platforms at scale. As a response, we suggest risk-mitigation measures, including inviting rural anthropologists and applied ecologists into the technology design process, applying frameworks for responsible and human-centred innovation, setting data cooperatives for improved data transparency and ownership rights, and initial deployment of agricultural AI in digital sandboxes. Machine learning applications in agriculture can bring many benefits in crop management and productivity. However, to avoid harmful effects of a new round of technological modernization, fuelled by AI, a thorough risk assessment is required, to review and mitigate risks such as unintended socio-ecological consequences and security concerns associated with applying machine learning models at scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助wjy321采纳,获得10
刚刚
CodeCraft应助优雅泡芙采纳,获得10
1秒前
1秒前
咩咩羊发布了新的文献求助10
1秒前
accepted完成签到 ,获得积分10
2秒前
fffzy发布了新的文献求助10
3秒前
迅速的小笼包完成签到,获得积分20
4秒前
苏酥完成签到,获得积分10
4秒前
master完成签到,获得积分20
5秒前
5秒前
最终幻想完成签到,获得积分10
5秒前
6秒前
Owen应助费谢尔采纳,获得10
6秒前
6秒前
Luckqi6688完成签到,获得积分10
6秒前
加菲丰丰应助丫丫采纳,获得30
7秒前
7秒前
10秒前
fffzy完成签到,获得积分10
10秒前
Duliang_zhao发布了新的文献求助10
11秒前
无情向梦完成签到,获得积分10
11秒前
戒骄戒躁发布了新的文献求助10
11秒前
11秒前
上官若男应助zhangfan采纳,获得10
12秒前
无色热带鱼完成签到,获得积分10
12秒前
12秒前
12秒前
Mic应助王小可采纳,获得10
13秒前
无心的安青完成签到,获得积分10
13秒前
14秒前
ding应助ZED采纳,获得30
14秒前
14秒前
小象完成签到,获得积分10
14秒前
香蕉觅云应助xukaixuan001采纳,获得10
15秒前
浮游应助小潘同学采纳,获得10
15秒前
小小鹿发布了新的文献求助10
15秒前
请不要挂机完成签到,获得积分10
16秒前
16秒前
wuqilong完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429316
求助须知:如何正确求助?哪些是违规求助? 4542743
关于积分的说明 14182778
捐赠科研通 4460720
什么是DOI,文献DOI怎么找? 2445823
邀请新用户注册赠送积分活动 1437000
关于科研通互助平台的介绍 1414164