Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease

医学 肝硬化 肝病学 慢性肝病 生物标志物 成像生物标志物 磁共振成像 肝病 弹性成像 脂肪变性 肝细胞癌 放射科 内科学 病理 重症监护医学 超声波 化学 生物化学
作者
Jérémy Dana,Aïna Venkatasamy,Antonio Saviano,Joachim Lupberger,Yujin Hoshida,Valérie Vilgrain,Pierre Nahon,Caroline Reinhold,B. Gallix,Thomas F. Baumert
出处
期刊:Hepatology International [Springer Science+Business Media]
卷期号:16 (3): 509-522 被引量:29
标识
DOI:10.1007/s12072-022-10303-0
摘要

Chronic liver diseases, resulting from chronic injuries of various causes, lead to cirrhosis with life-threatening complications including liver failure, portal hypertension, hepatocellular carcinoma. A key unmet medical need is robust non-invasive biomarkers to predict patient outcome, stratify patients for risk of disease progression and monitor response to emerging therapies. Quantitative imaging biomarkers have already been developed, for instance, liver elastography for staging fibrosis or proton density fat fraction on magnetic resonance imaging for liver steatosis. Yet, major improvements, in the field of image acquisition and analysis, are still required to be able to accurately characterize the liver parenchyma, monitor its changes and predict any pejorative evolution across disease progression. Artificial intelligence has the potential to augment the exploitation of massive multi-parametric data to extract valuable information and achieve precision medicine. Machine learning algorithms have been developed to assess non-invasively certain histological characteristics of chronic liver diseases, including fibrosis and steatosis. Although still at an early stage of development, artificial intelligence-based imaging biomarkers provide novel opportunities to predict the risk of progression from early-stage chronic liver diseases toward cirrhosis-related complications, with the ultimate perspective of precision medicine. This review provides an overview of emerging quantitative imaging techniques and the application of artificial intelligence for biomarker discovery in chronic liver disease.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nikii发布了新的文献求助10
刚刚
刚刚
852应助dudu采纳,获得10
刚刚
Lucas应助老实易蓉采纳,获得10
1秒前
2秒前
小马甲应助纯情的傲儿采纳,获得10
3秒前
slow发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
罗氏集团发布了新的文献求助10
7秒前
顾矜应助登山人采纳,获得10
7秒前
科研通AI5应助科研小白采纳,获得10
7秒前
7秒前
今后应助Ye采纳,获得10
7秒前
123完成签到,获得积分10
7秒前
今后应助孤鸿采纳,获得10
7秒前
情怀应助鹅鹅采纳,获得200
8秒前
科研通AI5应助郑恩熙采纳,获得10
8秒前
zzz完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
欧阳同志完成签到,获得积分20
10秒前
11秒前
SHY发布了新的文献求助10
11秒前
AI读文献的小新完成签到,获得积分10
11秒前
思源应助文艺的小海豚采纳,获得30
11秒前
tt发布了新的文献求助10
11秒前
酷波er应助lxt819采纳,获得10
12秒前
12秒前
dfxgsw发布了新的文献求助10
12秒前
ljs关闭了ljs文献求助
12秒前
可爱的函函应助FDD采纳,获得100
13秒前
13秒前
所所应助wq采纳,获得10
13秒前
Sirius发布了新的文献求助10
13秒前
踏实蜜粉完成签到 ,获得积分10
14秒前
李健的小迷弟应助julia采纳,获得10
14秒前
打打应助Cecilia采纳,获得10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794983
求助须知:如何正确求助?哪些是违规求助? 3339916
关于积分的说明 10298125
捐赠科研通 3056504
什么是DOI,文献DOI怎么找? 1677041
邀请新用户注册赠送积分活动 805105
科研通“疑难数据库(出版商)”最低求助积分说明 762333