Artificial intelligence-based rapid on-site cytopathological evaluation for bronchoscopy examinations

医学 考试(生物学) 人工智能 卷积神经网络 放射科 医学物理学 计算机科学 生物 古生物学
作者
Dilbar Ai,Qin Hu,Yen Chao,Chi-Cheng Fu,Wei Yuan,Lei Lv,D.-X. Ye,Chun Li,Maosong Ye,Yong Zhang,Jing Zhang,Jie Hu,Xiaobo Xu,Longfu Zhang,Qiuli Jiang,Xingxing Wang,Qu Fang,Boyang Wang,Yingyong Hou,Xin Zhang
标识
DOI:10.1016/j.ibmed.2022.100069
摘要

Cytological rapid on-site evaluation (ROSE) is becoming an integral technique for improving the performance of bronchoscopic examinations by confirming specimenadequacy and accuracy in real-time. However, the time- and personnel-consuming nature of ROSE limits its application. We constructed an artificial intelligence (AI)-based ROSE model using deep-learning convolutional neural network (CNN) technique to assist in classifying cytologic whole-slide images (WSIs) as malignant or benign. A total of 627 patients with ROSE slides were enrolled, among whom 374 and 91 patients were included and randomly assigned into training and validation groups, respectively. Another 162 patients were selected as a testing group. The malignant-benign classification results of the test group were compared between cytopathologists' results and AI-based ROSE model results. Actual ROSE reports of the test group given on-site were considered as results of junior cytopathologists; the official cytological diagnostic reports of the test group, which were given without time pressure and with reference to more clinical and pathological information by the senior cytopathologist, were considered as results of the senior cytopathologist. The real-world comprehensive diagnosis was considered as the gold standard. The area under the ROC curve (AUC) achieved 0.9846 in the validation group at patch-level. The accuracy achieved by one senior cytopathologist, two junior cytopathologists and the AI-based ROSE model were 96.90%, 83.30%, and 84.57%, respectively. This AI-based ROSE model may have the potential to support the diagnosis and therapeutic management of patients with respiratory lesions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DYJ完成签到,获得积分10
3秒前
开心之王发布了新的文献求助10
3秒前
3秒前
芷兰丁香发布了新的文献求助10
4秒前
慕青应助晨溪采纳,获得10
4秒前
8秒前
曾经的丹彤完成签到,获得积分10
9秒前
CipherSage应助出水的芙蓉采纳,获得30
10秒前
怕孤单的听寒完成签到,获得积分10
10秒前
甜甜的莞发布了新的文献求助10
11秒前
清晨的小鹿完成签到,获得积分10
13秒前
15秒前
开心之王完成签到,获得积分10
16秒前
Xiong发布了新的文献求助10
20秒前
大橙子发布了新的文献求助10
22秒前
23秒前
积极的罡完成签到 ,获得积分10
25秒前
阳阳阳完成签到 ,获得积分10
25秒前
VT发布了新的文献求助10
29秒前
张宏宇发布了新的文献求助10
29秒前
大橙子完成签到,获得积分10
29秒前
科研通AI5应助cff采纳,获得10
29秒前
考啥都上岸完成签到,获得积分10
35秒前
独特成威完成签到 ,获得积分10
36秒前
guanzhuang完成签到,获得积分10
37秒前
芷兰丁香发布了新的文献求助10
37秒前
42秒前
赘婿应助张宏宇采纳,获得10
43秒前
无解完成签到,获得积分10
44秒前
叶海发布了新的文献求助10
48秒前
50秒前
执着代曼完成签到 ,获得积分10
50秒前
53秒前
53秒前
科研通AI2S应助tangz采纳,获得10
54秒前
大模型应助风中梦蕊采纳,获得10
55秒前
mxinm发布了新的文献求助10
56秒前
ggyybb完成签到 ,获得积分10
56秒前
59秒前
Casson发布了新的文献求助10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777104
求助须知:如何正确求助?哪些是违规求助? 3322457
关于积分的说明 10210413
捐赠科研通 3037822
什么是DOI,文献DOI怎么找? 1666890
邀请新用户注册赠送积分活动 797849
科研通“疑难数据库(出版商)”最低求助积分说明 758044