MRI‐Based Back Propagation Neural Network Model as a Powerful Tool for Predicting the Response to Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma

鼻咽癌 接收机工作特性 逻辑回归 置信区间 医学 单变量 曼惠特尼U检验 诱导化疗 核医学 内科学 肿瘤科
作者
Hai Liao,Xi Chen,Shaolu Lu,Guanqiao Jin,Wei Pei,Yingxue Li,Yau-Huei Wei,Xia Huang,Chenghuan Wang,Xueli Liang,Huayan Bao,Li Ting Liu,Danke Su
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
标识
DOI:10.1002/jmri.28047
摘要

Pretreatment individualized assessment of tumor response to induction chemotherapy (ICT) is a need in locoregionally advanced nasopharyngeal carcinoma (LANPC). Imaging method plays vital role in tumor response assessment. However, powerful imaging method for ICT response prediction in LANPC is insufficient.To establish a robust model for predicting response to ICT in LANPC by comparing the performance of back propagation neural network (BPNN) model with logistic regression model.Retrospective.A total of 286 LANPC patients were assigned to training (N = 200, 43.8 ± 10.9 years, 152 male) and testing (N = 86, 43.5 ± 11.3 years, 57 male) cohorts.T2 -weighted imaging, contrast enhanced-T1 -weighted imaging using fast spin echo sequences at 1.5 T scanner.Predictive clinical factors were selected by univariate and multivariate logistic models. Radiomic features were screened by interclass correlation coefficient, single-factor analysis, and the least absolute shrinkage selection operator (LASSO). Four models based on clinical factors (Modelclinic ), radiomics features (Modelradiomics ), and clinical factors + radiomics signatures using logistic (Modelcombined ), and BPNN (ModelBPNN ) methods were established, and model performances were compared.Student's t-test, Mann-Whitney U-test, and Chi-square test or Fisher's exact test were used for comparison analysis. The performance of models was assessed by area under the receiver operating characteristic (ROC) curve (AUC) and Delong test. P < 0.05 was considered statistical significance.Three significant clinical factors: Epstein-Barr virus-DNA (odds ratio [OR] = 1.748; 95% confidence interval [CI], 0.969-3.171), sex (OR = 2.883; 95% CI, 1.364-6.745), and T stage (OR = 1.853; 95% CI, 1.201-3.052) were identified via univariate and multivariate logistic models. Twenty-four radiomics features were associated with treatment response. ModelBPNN demonstrated the highest performance among Modelcombined , Modelradiomics , and Modelclinic (AUC of training cohort: 0.917 vs. 0.808 vs. 0.795 vs. 0.707; testing cohort: 0.897 vs. 0.755 vs. 0.698 vs. 0.695).A machine-learning approach using BPNN showed better ability than logistic regression model to predict tumor response to ICT in LANPC.3 TECHNICAL EFFICACY: Stage 2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助xiaokai采纳,获得10
刚刚
lyh完成签到,获得积分10
刚刚
张婧发布了新的文献求助30
1秒前
木子梨狸完成签到,获得积分10
1秒前
2秒前
尹妮妮完成签到,获得积分10
3秒前
谨慎翎发布了新的文献求助10
4秒前
hao253完成签到,获得积分10
4秒前
cassies完成签到 ,获得积分10
9秒前
清风白鹭发布了新的文献求助10
9秒前
张麻子完成签到,获得积分20
10秒前
彭于晏应助豺狼的日子采纳,获得10
10秒前
11秒前
科研通AI2S应助Two_h采纳,获得10
11秒前
江姜完成签到 ,获得积分10
12秒前
Liang完成签到,获得积分10
13秒前
limingming完成签到,获得积分10
14秒前
老铁发布了新的文献求助50
15秒前
量子星尘发布了新的文献求助10
15秒前
lkq完成签到,获得积分10
16秒前
大模型应助南瓜猪猪头采纳,获得10
17秒前
123完成签到 ,获得积分10
19秒前
21秒前
失眠海云完成签到,获得积分10
21秒前
21秒前
张麻子关注了科研通微信公众号
22秒前
辣辣辣完成签到,获得积分10
24秒前
kelly发布了新的文献求助10
26秒前
27秒前
小蘑菇应助拼搏的思萱采纳,获得10
30秒前
30秒前
科研通AI2S应助Two_h采纳,获得10
33秒前
kelly完成签到,获得积分10
34秒前
小羊完成签到 ,获得积分10
35秒前
35秒前
gao0505完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
37秒前
不安青牛应助科研通管家采纳,获得10
40秒前
不安青牛应助科研通管家采纳,获得10
40秒前
Magali应助科研通管家采纳,获得30
40秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
血液中补体及巨噬细胞对大肠杆菌噬菌体PNJ1809-09活性的影响 500
Methodology for the Human Sciences 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4314855
求助须知:如何正确求助?哪些是违规求助? 3833960
关于积分的说明 11993715
捐赠科研通 3474285
什么是DOI,文献DOI怎么找? 1905223
邀请新用户注册赠送积分活动 951818
科研通“疑难数据库(出版商)”最低求助积分说明 853388