Comparison study between hybrid Nelder-Mead particle swarm optimization and open circuit voltage—Recursive least square for the battery parameters estimation

粒子群优化 电池(电) 电压 锂离子电池 等效电路 开路电压 荷电状态 计算机科学 电动汽车 汽车工程 工程类 算法 电气工程 功率(物理) 物理 量子力学
作者
Imen Jarrraya,Laid Degaa,Nassim Rizoug,Mohamed Hedi Chabchoub,Hafedh Trabelsi
出处
期刊:Journal of energy storage [Elsevier]
卷期号:50: 104424-104424 被引量:21
标识
DOI:10.1016/j.est.2022.104424
摘要

Recently, the whole world has turned to the rechargeable battery as the primary source of electric vehicles (EVs). Meanwhile, the majority of the automobile manufacturers quantify lithium as a key material for the development of battery chemistry. Currently, Lithium-ion (Li-ion) batteries are the dominant technology for battery electric vehicles (BEVs). The real value of Lithium is that they deliver high and fast energy densities in a small volume or configuration. Thus, the description, identification and modeling of the battery, during its operation, are essential actors for the success of EVs development. However, modeling Li-ion-based energy storage devices has not yet been easy enough due to the complexity of chemical reactions in real time. In this work, the modeling of Li-ion cells is performed with dynamic equivalent electrical circuit model (ECM). This study aims to exploit the advantages of two hybrid estimation methods for the identification of Li-ion battery model parameters. The first method is hybrid optimization algorithm PSO-NM which is composed of a particle swarm optimization algorithm (PSO) and a Nelder–Mead algorithm (NM). On the other hand, the second hybrid model, namely the OCV-RLS algorithm, benefits from the advantages of direct measurement of open circuit voltage (OCV) and of a Least Square Recursive (RLS) to obtain an optimum overall performance estimate. The validation results support the reliability of these proposed hybrid methods to identify the Li-ion battery model. In addition, they constitute a reference for the comparison of the two algorithms PSO-NM and OCV-RLS to solve the problem of Li-ion battery SOC estimating.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
hbkj完成签到,获得积分10
1秒前
ll61发布了新的文献求助10
1秒前
等风来完成签到,获得积分10
1秒前
毕业毕业完成签到,获得积分10
2秒前
BLltree完成签到,获得积分20
2秒前
Nova完成签到 ,获得积分10
3秒前
充电宝应助烟雾镜采纳,获得10
4秒前
qwe123完成签到 ,获得积分10
4秒前
Ffffff发布了新的文献求助10
6秒前
爱吃蛋饼的zach完成签到 ,获得积分10
6秒前
梁小鑫发布了新的文献求助10
7秒前
ZHANG给ZHANG的求助进行了留言
7秒前
2339822272完成签到,获得积分10
7秒前
小乐完成签到,获得积分10
8秒前
8秒前
Jasper应助Chelsea采纳,获得30
9秒前
10秒前
黎日新完成签到,获得积分10
11秒前
12秒前
chenbin1105完成签到,获得积分10
13秒前
余亮完成签到,获得积分10
13秒前
15秒前
蛋蛋飞鸟发布了新的文献求助30
16秒前
16秒前
无限无声完成签到 ,获得积分10
16秒前
超级玛丽完成签到 ,获得积分0
16秒前
123456789发布了新的文献求助10
17秒前
17秒前
18秒前
科研通AI6应助cqyc007采纳,获得10
19秒前
1111发布了新的文献求助10
19秒前
我爱科研发布了新的文献求助20
20秒前
111发布了新的文献求助50
21秒前
22秒前
幸运兔发布了新的文献求助10
22秒前
23秒前
23秒前
端庄的罗发布了新的文献求助10
24秒前
Camellia发布了新的文献求助10
27秒前
上官若男应助幸运兔采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5496844
求助须知:如何正确求助?哪些是违规求助? 4594452
关于积分的说明 14444825
捐赠科研通 4526995
什么是DOI,文献DOI怎么找? 2480606
邀请新用户注册赠送积分活动 1465047
关于科研通互助平台的介绍 1437782