僵尸网络
计算机科学
网络取证
图形
节点(物理)
人工智能
计算机网络
计算机安全
理论计算机科学
互联网
万维网
工程类
数字取证
结构工程
作者
Wai Weng Lo,Siamak Layeghy,Mohanad Sarhan,Marius Portmann
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2207.09088
摘要
In this paper, we propose XG-BoT, an explainable deep graph neural network model for botnet node detection. The proposed model comprises a botnet detector and an explainer for automatic forensics. The XG-BoT detector can effectively detect malicious botnet nodes in large-scale networks. Specifically, it utilizes a grouped reversible residual connection with a graph isomorphism network to learn expressive node representations from botnet communication graphs. The explainer, based on the GNNExplainer and saliency map in XG-BoT, can perform automatic network forensics by highlighting suspicious network flows and related botnet nodes. We evaluated XG-BoT using real-world, large-scale botnet network graph datasets. Overall, XG-BoT outperforms state-of-the-art approaches in terms of key evaluation metrics. Additionally, we demonstrate that the XG-BoT explainers can generate useful explanations for automatic network forensics.
科研通智能强力驱动
Strongly Powered by AbleSci AI