How humans obtain information from AI: Categorizing user messages in human-AI collaborative conversations

分类 计算机科学 会话(web分析) 一致性(知识库) 集合(抽象数据类型) 服务(商务) 人机交互 万维网 情报检索 自然语言处理 人工智能 经济 经济 程序设计语言
作者
Yuhan Wei,Wei Lu,Qikai Cheng,Tingting Jiang,Shewei Liu
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:59 (2): 102838-102838 被引量:14
标识
DOI:10.1016/j.ipm.2021.102838
摘要

Although there is an increasingly number of research about the design and use of conversational agents, it is still difficult for conversational agents to completely replace human service. Therefore, more and more companies have adopted human-AI collaborative systems to deliver customer service. It is important to understand how people obtain information from human-AI collaborative conversations. While the existing work relies on self-reported methods to elicit qualitative feedback from users, we have concluded a categorization system for user messages in human-AI collaborative conversations after a thorough examination of a real-world customer service log, which could objectively reflect the user's information needs. We categorize user messages into five categories and 15 specific types related to three high-level intentions. Two annotators independently classified the same set of 1,478 user messages from 300 conversations and reached a moderate consistency. We summarize and report the characteristics of different message types and compare their usage in sessions with only human, AI, or both representatives. Our results show that different message types vary significantly in usage frequency, length, and text similarities with other messages in a session. Also, the frequency of using different message types in our dataset seems consistent over sessions with different types of representatives. But we also observed some significant differences in a few specific message types across the sessions with different representatives. Our results are used to suggest some areas for improvement and future work in human-AI collaborative conversational systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱熊sama完成签到,获得积分10
刚刚
虚心沂完成签到,获得积分10
1秒前
曼曼完成签到,获得积分20
1秒前
白了个白完成签到 ,获得积分10
1秒前
geo_xl完成签到 ,获得积分10
1秒前
1秒前
CC发布了新的文献求助10
2秒前
鱼鱼鱼完成签到,获得积分10
2秒前
陈点点发布了新的文献求助10
2秒前
kento完成签到,获得积分10
2秒前
顾矜应助独特的豌豆采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
科研通AI5应助大涵心情好采纳,获得30
3秒前
w11完成签到,获得积分10
4秒前
4秒前
烟花应助kylin采纳,获得10
4秒前
ww完成签到,获得积分10
4秒前
Nature完成签到,获得积分10
5秒前
aa完成签到,获得积分10
6秒前
weishuhan完成签到 ,获得积分10
6秒前
大玲完成签到,获得积分10
6秒前
wxwang发布了新的文献求助10
6秒前
虚心沂发布了新的文献求助10
6秒前
6秒前
Z160完成签到,获得积分10
6秒前
ClaudiaCY完成签到,获得积分10
7秒前
7秒前
8秒前
锦鲤完成签到,获得积分20
8秒前
茉莉园完成签到,获得积分10
8秒前
8秒前
hawz发布了新的文献求助10
8秒前
yyk发布了新的文献求助10
8秒前
LU完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830731
求助须知:如何正确求助?哪些是违规求助? 3373073
关于积分的说明 10477436
捐赠科研通 3093209
什么是DOI,文献DOI怎么找? 1702398
邀请新用户注册赠送积分活动 818982
科研通“疑难数据库(出版商)”最低求助积分说明 771173