亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dual-stream reinforcement network for few-shot image segmentation

计算机科学 人工智能 模式识别(心理学) 帕斯卡(单位) 分割 特征(语言学) 特征向量 联营 语言学 哲学 程序设计语言
作者
Mingwei Tang,Lin Zhu,Yangsheng Xu,Ming‐Hui Zhao
出处
期刊:Digital Signal Processing [Elsevier BV]
卷期号:134: 103911-103911 被引量:1
标识
DOI:10.1016/j.dsp.2023.103911
摘要

Deep learning has achieved successful results in semantic segmentation of images. However, semantic segmentation of images still faces challenges in real-world applications. On the one hand, due to the repeated stacking of convolution layer and pooling layer, each feature information is localized, eliminating long-term dependence and content deviation. On the other hand, it requires large number of annotated dataset for training, and can not classify unknown categories. To address the above issues, a dual-stream reinforcement network (DRNet) is proposed for few-shot image semantic segmentation in the paper. The dual-stream branches are designed, including a prototype enhancement branch and a query-guided branch. The former branch is designed to compute query vectors based on feature similarity. The latter branch is presented to extract the expression of target features and feature consistency information between images by utilizing additional memory units. Moreover, a matrix of feature correlations is generated by a graph attention mechanism between support vectors and query vectors, which allows query information to be propagated to support vectors. Finally, additional memory units are used to mine the representation of target features. In this way, images with consistent features and information about common features can be effectively fused. The experimental results show that the proposed model DRNet can achieve state-of-the-art results compared to other models. Notably, the mean-IoU scores of our model are 53.34% and 62.03% for PASCAL-5i at 1-shot and 5-shot settings, respectively, which are more competitive than other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
范白容完成签到 ,获得积分0
15秒前
黎泱完成签到 ,获得积分10
20秒前
shining完成签到,获得积分10
20秒前
LJHUA完成签到,获得积分10
21秒前
27秒前
32秒前
32秒前
Ava应助nulinuli采纳,获得10
35秒前
36秒前
早日毕业完成签到 ,获得积分10
38秒前
ggg完成签到 ,获得积分10
39秒前
haojie完成签到 ,获得积分10
39秒前
SciGPT应助魁梧的小笼包采纳,获得10
42秒前
Akim应助科研通管家采纳,获得10
43秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
回眸完成签到 ,获得积分10
44秒前
monned完成签到 ,获得积分10
56秒前
疯狂的沛蓝完成签到 ,获得积分10
1分钟前
JamesPei应助Soily采纳,获得10
1分钟前
1分钟前
qwggg完成签到 ,获得积分10
1分钟前
1分钟前
JoySue发布了新的文献求助10
1分钟前
1分钟前
77992完成签到 ,获得积分10
1分钟前
研友_VZG7GZ应助揍鱼采纳,获得10
1分钟前
吹皱一湖春水完成签到 ,获得积分10
1分钟前
zuolan发布了新的文献求助10
1分钟前
栗子完成签到,获得积分20
1分钟前
桃李春风一杯酒完成签到,获得积分10
1分钟前
1分钟前
是谁还没睡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
栗子发布了新的文献求助10
1分钟前
揍鱼发布了新的文献求助10
1分钟前
揍鱼完成签到,获得积分10
1分钟前
鳄鱼不做饿梦完成签到,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840741
求助须知:如何正确求助?哪些是违规求助? 3382645
关于积分的说明 10526093
捐赠科研通 3102518
什么是DOI,文献DOI怎么找? 1708856
邀请新用户注册赠送积分活动 822754
科研通“疑难数据库(出版商)”最低求助积分说明 773517