亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modal contrastive mutual learning and pseudo-label re-learning for semi-supervised medical image segmentation

分割 计算机科学 人工智能 模态(人机交互) 模式 情态动词 模式识别(心理学) 一致性(知识库) 推论 机器学习 相似性(几何) 图像分割 半监督学习 监督学习 图像(数学) 人工神经网络 社会学 化学 高分子化学 社会科学
作者
Shuo Zhang,Jiaojiao Zhang,Biao Tian,Thomas Lukasiewicz,Zhenghua Xu
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:83: 102656-102656 被引量:67
标识
DOI:10.1016/j.media.2022.102656
摘要

Semi-supervised learning has a great potential in medical image segmentation tasks with a few labeled data, but most of them only consider single-modal data. The excellent characteristics of multi-modal data can improve the performance of semi-supervised segmentation for each image modality. However, a shortcoming for most existing multi-modal solutions is that as the corresponding processing models of the multi-modal data are highly coupled, multi-modal data are required not only in the training but also in the inference stages, which thus limits its usage in clinical practice. Consequently, we propose a semi-supervised contrastive mutual learning (Semi-CML) segmentation framework, where a novel area-similarity contrastive (ASC) loss leverages the cross-modal information and prediction consistency between different modalities to conduct contrastive mutual learning. Although Semi-CML can improve the segmentation performance of both modalities simultaneously, there is a performance gap between two modalities, i.e., there exists a modality whose segmentation performance is usually better than that of the other. Therefore, we further develop a soft pseudo-label re-learning (PReL) scheme to remedy this gap. We conducted experiments on two public multi-modal datasets. The results show that Semi-CML with PReL greatly outperforms the state-of-the-art semi-supervised segmentation methods and achieves a similar (and sometimes even better) performance as fully supervised segmentation methods with 100% labeled data, while reducing the cost of data annotation by 90%. We also conducted ablation studies to evaluate the effectiveness of the ASC loss and the PReL module.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助灼才采纳,获得10
42秒前
1分钟前
asd1576562308完成签到 ,获得积分10
1分钟前
扫地888完成签到 ,获得积分10
1分钟前
1分钟前
Foxjker完成签到 ,获得积分10
2分钟前
斯文败类应助Pearl采纳,获得10
3分钟前
Yakamoz完成签到 ,获得积分10
3分钟前
3分钟前
糖醋里脊加醋完成签到 ,获得积分10
3分钟前
Pearl发布了新的文献求助10
3分钟前
chaotianjiao完成签到 ,获得积分10
3分钟前
Pearl完成签到,获得积分10
3分钟前
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
深情安青应助科研通管家采纳,获得10
3分钟前
zz发布了新的文献求助10
3分钟前
jenningseastera应助Kevin采纳,获得30
4分钟前
4分钟前
4分钟前
4分钟前
布布完成签到,获得积分10
4分钟前
布布发布了新的文献求助20
4分钟前
5分钟前
Lucas应助zch19970203采纳,获得10
5分钟前
5分钟前
狒狒发布了新的文献求助10
5分钟前
5分钟前
5分钟前
狒狒完成签到,获得积分10
5分钟前
5分钟前
hugeyoung发布了新的文献求助10
5分钟前
hugeyoung完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
zch19970203发布了新的文献求助10
6分钟前
7分钟前
丘比特应助科研通管家采纳,获得10
7分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Digital predistortion of memory polynomial systems using direct and indirect learning architectures 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3916633
求助须知:如何正确求助?哪些是违规求助? 3462008
关于积分的说明 10920551
捐赠科研通 3189495
什么是DOI,文献DOI怎么找? 1763013
邀请新用户注册赠送积分活动 853205
科研通“疑难数据库(出版商)”最低求助积分说明 793747