亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scenario based urban growth modeling and prediction using earth observation datasets towards urban policy improvement

马尔可夫链 城市化 城市规划 多层感知器 马尔可夫模型 人工神经网络 计算机科学 市区 地理 机器学习 工程类 土木工程 经济增长 经济 经济
作者
Sk. Mustak,Naresh Kumar Baghmar,Sudhir Kumar Singh,Prashant K. Srivastava
出处
期刊:Geocarto International [Informa]
卷期号:37 (27): 18275-18303 被引量:8
标识
DOI:10.1080/10106049.2022.2138983
摘要

Urbanization is a growing challenge for city planners and policymakers who are continuously focusing on computer-based statistical models, and machine learning for a sustainable and livable city. The main objectives of this article were to develop a robust artificial intelligence-based hybrid geo-simulation model to support multi-scenario urban growth modeling for urban policy improvement. In this study, earth observation datasets, Artificial Neural Network-Multilayer Perceptron coupled with Markov Chain (MLP-Markov) and Cellular Automata and Markov Chain (CA-Markov) were applied and the best performance was measured for urban growth modeling. The result shows that the urban land use was 25.79, 31.40, 45.19, 89.22 and 147.96 square km in 1971, 1981, 1991, 2001 and 2011 which has been predicted for 2021, 2031, 2041 and 2051 based on the planned and unplanned development scenarios. The predicted urban land use of the planned development scenario is 242.10, 312.69, 363.80 and 400.72 square km while 242.91, 314.31, 366.23 and 403.98 square km of the unplanned development scenario during 2021, 2031, 2041 and 2051. The uncertainty result shows that overall agreement (84.99%) and other indices are higher, and disagreement is lower (15.01%) for MLP-Markov than the CA-Markov for the urban land use prediction. The hybrid geo-simulation models were tested over multiple urban planning indicators to understand urban growth patterns and related scenarios. The result shows that the geo-simulation model is extremely sensitive to the complex pattern of urban growth and disperse indicators over space and time. This study provides a promising guideline for urban planners and conservation scientists to implement a robust artificial intelligence-based hybrid geo-simulation model for compact, organized, and integrated land use-transportation development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏欣娜发布了新的文献求助10
8秒前
15秒前
李爱国应助魏欣娜采纳,获得10
20秒前
CC完成签到,获得积分10
21秒前
22秒前
35秒前
ceeray23发布了新的文献求助30
38秒前
50秒前
56秒前
57秒前
yuxiazhengye发布了新的文献求助10
1分钟前
1分钟前
yuxiazhengye完成签到,获得积分10
1分钟前
烟花应助supermaltose采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
supermaltose发布了新的文献求助10
1分钟前
1分钟前
1分钟前
冰可乐真的好喝完成签到,获得积分10
1分钟前
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得20
1分钟前
赘婿应助冰可乐真的好喝采纳,获得50
1分钟前
开心超人发布了新的文献求助10
1分钟前
科研通AI2S应助cmz采纳,获得10
2分钟前
2分钟前
2分钟前
supermaltose完成签到,获得积分10
2分钟前
开心超人完成签到,获得积分20
2分钟前
2分钟前
DODO发布了新的文献求助10
2分钟前
cmz发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482368
求助须知:如何正确求助?哪些是违规求助? 4583217
关于积分的说明 14388979
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432510