已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Alzheimer’s disease diagnosis using gray matter of T1‐weighted sMRI data and vision transformer

灰色(单位) 人工智能 医学 计算机科学 放射科
作者
Maryam Akhavan Aghdam,Serdar Bozdag,Fahad Saeed
出处
期刊:Alzheimers & Dementia [Wiley]
卷期号:20 (S2)
标识
DOI:10.1002/alz.089944
摘要

Abstract Background Alzheimer's Disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive decline. Traditional diagnostic methods, mainly based on cognitive, memory, and behavioral tests, have limitations, particularly in the early detection of AD. Structural magnetic resonance imaging (sMRI) has emerged as a key tool in understanding the brain changes associated with AD, focusing particularly on alterations in gray matter (GM). However, the complexity of brain changes in AD requires sophisticated analysis methods. In recent years, machine learning (ML) models have shown great potential in interpreting complex neuroimaging data. These models can detect intricate patterns in neuroimaging data, making them invaluable in enhancing the diagnostic accuracy and early AD diagnosis. Therefore, combining the neuroimaging data with ML models presents a promising direction in improving the early‐diagnosis and understanding of AD. Method We propose a novel approach to diagnose AD using Vision Transformer (ViT) (Figure 1) [1], a cutting‐edge class of ML model, and GM of T1‐weighted sMRI data. The proposed approach leverages the power of deep‐learning (DL) to detect the GM changes that are indicative of AD. We used pretrained ViT model to extract features from the GM sagittal and coronal slices of sMRI data and classify AD from cognitively normal (CN). We employed ADNI dataset, focusing on subjects with T1‐weighed MPRAGE sMRI scans, including 70 AD patients and 85 CN individuals. Result The study achieved an average classification accuracy of 97.6% in sagittal slices and 97.7% in coronal slices (Figures 2 and 3). These results indicate a significantly higher accuracy in diagnosing AD using the proposed method compared to other state‐of‐the‐art models based on sMRI data. The high accuracy underscores the model's capability in effectively distinguishing between AD patients and CN individuals, demonstrating its potential utility in clinical settings. Conclusion The proposed approach demonstrates a significant advancement in the accurate diagnosis of AD, which might be useful for early‐diagnosis. Our proposed ML model represents a considerable improvement over existing ML methods, offering a new avenue for research and application in the field of neurodegenerative diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
HeWang完成签到,获得积分10
4秒前
7秒前
HeWang发布了新的文献求助10
7秒前
10秒前
斯文败类应助ZK采纳,获得30
10秒前
tkx是流氓兔发布了新的文献求助200
10秒前
11秒前
ttsx完成签到,获得积分10
14秒前
MIWU完成签到,获得积分10
17秒前
17秒前
Shelton完成签到,获得积分10
18秒前
28秒前
wenbo完成签到,获得积分10
30秒前
guoer完成签到,获得积分10
33秒前
35秒前
35秒前
Ava应助科研通管家采纳,获得10
39秒前
CipherSage应助科研通管家采纳,获得10
39秒前
打打应助科研通管家采纳,获得10
39秒前
tuanheqi应助科研通管家采纳,获得30
39秒前
浮游应助科研通管家采纳,获得10
39秒前
浮游应助科研通管家采纳,获得10
39秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
执着幻雪发布了新的文献求助10
40秒前
42秒前
个性的映易完成签到,获得积分10
46秒前
47秒前
啾啾完成签到 ,获得积分10
52秒前
屎上雕花选手完成签到,获得积分10
54秒前
ding应助精明的眼神采纳,获得10
54秒前
凶狠的映易完成签到 ,获得积分10
55秒前
58秒前
Shiku完成签到,获得积分10
1分钟前
汉堡包应助zzf采纳,获得10
1分钟前
沉默寻凝完成签到,获得积分10
1分钟前
zbzfp完成签到,获得积分20
1分钟前
1分钟前
深情安青应助金金采纳,获得20
1分钟前
共享精神应助khan采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185715
求助须知:如何正确求助?哪些是违规求助? 4371117
关于积分的说明 13611844
捐赠科研通 4223406
什么是DOI,文献DOI怎么找? 2316401
邀请新用户注册赠送积分活动 1315015
关于科研通互助平台的介绍 1263947