细胞外基质
肌成纤维细胞
成纤维细胞
细胞生物学
化学
基因沉默
基质金属蛋白酶
纤维化
伤口愈合
病理
生物
免疫学
医学
生物化学
体外
基因
作者
Xiu‐qi Wang,Tao Guo,Xiaogang Li,Zhao Tian,Linru Fu,Zhijing Sun
标识
DOI:10.1097/cm9.0000000000003409
摘要
Fibrosis of the connective tissue in the vaginal wall predominates in pelvic organ prolapse (POP), which is characterized by excessive fibroblast-to-myofibroblast differentiation and abnormal deposition of the extracellular matrix (ECM). Our study aimed to investigate the effect of ECM stiffness on vaginal fibroblasts and to explore the role of methyltransferase 3 (METTL3) in the development of POP. Polyacrylamide hydrogels were applied to create an ECM microenvironment with variable stiffness to evaluate the effects of ECM stiffness on the proliferation, differentiation, and expression of ECM components in vaginal fibroblasts. METTL3 small interfering RNA and an overexpression vector were transfected into vaginal fibroblasts to evaluate the effects of METTL3 silencing and overexpression on matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal modulation of the ECM. Both procedures were detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, Western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), and immunofluorescence (IF). Vaginal fibroblasts from POP patients exhibited increased proliferation ability, increased expression of α-smooth muscle actin (α-SMA), decreased expression of collagen I/III, and significantly decreased expression of tissue inhibitors of matrix metalloproteinases (TIMPs) in the stiff matrix (P <0.05). Compared with those from non-POP patients, vaginal wall tissues from POP patients demonstrated a significant increase in METTL3 content (P <0.05). However, silencing METTL3 expression in vaginal fibroblasts with high ECM stiffness resulted in decreased proliferation ability, decreased α-SMA expression, an increased ratio of collagen I/III, and increased TIMP1 and TIMP2 expression. Conversely, METTL3 overexpression significantly promoted the process of increased proliferation ability, increased α-SMA expression, decreased ratio of collagen I/III and decreased TIMP1 and TIMP2 expression in the soft matrix (P <0.05). Elevated ECM stiffness can promote excessive proliferation, differentiation, and abnormal ECM modulation, and the expression of METTL3 plays an important role in alleviating or aggravating matrix stiffness-induced vaginal fibroblast-to-myofibroblast differentiation and abnormal ECM modulation.
科研通智能强力驱动
Strongly Powered by AbleSci AI