Physics-Informed Neural Network Model for Predictive Risk Assessment and Safety Analysis

行人 计算机科学 概率逻辑 帧(网络) 人工神经网络 蒙特卡罗方法 风险分析(工程) 人工智能 运输工程 工程类 数学 医学 电信 统计
作者
Jooyong Lee,Justin S. Chang
出处
期刊:Transportation Research Record [SAGE Publishing]
标识
DOI:10.1177/03611981241297662
摘要

This paper presents a physics-informed neural network (PINN) designed to predict the future locations of both vehicles and pedestrians, providing critical insights into road safety risks. By forecasting potential trajectories of road users, the proposed model informs preemptive strategies to avoid accidents. The physics model incorporates the intelligent driver model for vehicles and the social force model for pedestrians. The stochastic nature of risk evaluation is addressed by probabilistically predicting future locations based on the expected distribution in a two-dimensional open space. The framework accurately assesses the risk by predicting the future locations of vehicles and pedestrians within a 2- to 4-s time frame with approximately 2% error rates. The risk evaluation performance of the proposed framework was tested by calculating the time to collision (TTC) between vehicles and pedestrians and analyzing traffic conflicts. Leveraging the probabilistic predictions, the TTC was evaluated stochastically using Monte Carlo simulations and the Kolmogorov–Smirnov test, enabling a more granular and effective traffic conflict analysis. The developed method demonstrated over 95% accuracy when evaluating potentially dangerous events occurring within 3 s or less, providing actionable insights for improving road safety. The framework was deployed in a real-world setting, demonstrating reliable and robust test results. This comprehensive approach is expected to pave the way for more effective risk evaluation and mitigation at intersections and on roads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭芸汐关注了科研通微信公众号
1秒前
洒家完成签到 ,获得积分10
1秒前
我爱Chem发布了新的文献求助10
1秒前
3秒前
文静萤发布了新的文献求助10
3秒前
4秒前
烟花应助有点怪采纳,获得10
4秒前
dddd发布了新的文献求助10
5秒前
Akim应助麋鹿采纳,获得10
7秒前
silent发布了新的文献求助10
8秒前
熊有鹏发布了新的文献求助10
9秒前
NexusExplorer应助梦~采纳,获得10
9秒前
st完成签到,获得积分20
10秒前
12秒前
Lingdongmei发布了新的文献求助20
12秒前
waiting完成签到,获得积分10
13秒前
14秒前
echoo完成签到,获得积分20
14秒前
yuisl发布了新的文献求助10
16秒前
斯文败类应助dddd采纳,获得10
17秒前
顾矜应助赵新如采纳,获得100
17秒前
18秒前
SciGPT应助Charlie采纳,获得10
19秒前
麋鹿完成签到,获得积分10
19秒前
20秒前
21秒前
熊有鹏完成签到,获得积分20
21秒前
天朗完成签到,获得积分10
22秒前
郭芸汐发布了新的文献求助10
24秒前
26秒前
26秒前
orixero应助小郭采纳,获得10
26秒前
yuisl完成签到,获得积分10
28秒前
28秒前
李洛华哥完成签到,获得积分10
29秒前
29秒前
幸福立果完成签到 ,获得积分10
30秒前
英姑应助科研通管家采纳,获得10
31秒前
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800499
求助须知:如何正确求助?哪些是违规求助? 3345700
关于积分的说明 10327008
捐赠科研通 3062257
什么是DOI,文献DOI怎么找? 1680908
邀请新用户注册赠送积分活动 807268
科研通“疑难数据库(出版商)”最低求助积分说明 763598