Multi-Task Learning for Intention and Trajectory Prediction in Human-Robot Collaborative Disassembly Tasks

计算机科学 任务(项目管理) 弹道 人机交互 机器人 人机交互 任务分析 人工智能 工程类 物理 系统工程 天文
作者
Xinyao Zhang,Sibo Tian,Xiao Liang,Minghui Zheng,Sara Behdad
标识
DOI:10.1115/detc2024-143753
摘要

Abstract Human-robot collaboration (HRC) has become an integral element of many industries, including manufacturing. A fundamental requirement for safe HRC is to understand and predict human intentions and trajectories, especially when humans and robots operate in close proximity. However, predicting both human intention and trajectory components simultaneously remains a research gap. In this paper, we have developed a multi-task learning (MTL) framework designed for HRC, which processes motion data from both human and robot trajectories. The first task predicts human trajectories, focusing on reconstructing the motion sequences. The second task employs supervised learning, specifically a Support Vector Machine (SVM), to predict human intention based on the latent representation. In addition, an unsupervised learning method, Hidden Markov Model (HMM), is utilized for human intention prediction that offers a different approach to decoding the latent features. The proposed framework uses MTL to understand human behavior in complex manufacturing environments. The novelty of the work includes the use of a latent representation to capture temporal dynamics in human motion sequences and a comparative analysis of various encoder architectures. We validate our framework through a case study focused on a HRC disassembly desktop task. The findings confirm the system’s capability to accurately predict both human intentions and trajectories.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力的学完成签到,获得积分10
刚刚
谦让的半山完成签到 ,获得积分10
2秒前
alex_zhao完成签到,获得积分10
2秒前
3秒前
可爱的函函应助Albee采纳,获得10
4秒前
bkagyin应助勇敢兔兔采纳,获得30
5秒前
5秒前
kang给kang的求助进行了留言
6秒前
毕个业完成签到 ,获得积分10
6秒前
lin应助勇者小超人采纳,获得10
8秒前
汉堡包应助勇者小超人采纳,获得10
8秒前
8秒前
成就的绮烟完成签到 ,获得积分10
8秒前
张苶子完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
努力学习的小垃圾完成签到,获得积分10
12秒前
PPPPP星星完成签到,获得积分10
13秒前
14秒前
14秒前
陶醉的熊发布了新的文献求助10
14秒前
14秒前
田様应助123采纳,获得30
15秒前
15秒前
17秒前
由天与完成签到,获得积分10
17秒前
共享精神应助吴五五采纳,获得10
17秒前
18秒前
读博小菜菜完成签到,获得积分10
19秒前
科研通AI5应助花灯王子采纳,获得10
19秒前
英俊的铭应助Will采纳,获得10
20秒前
非而者厚应助maclogos采纳,获得10
20秒前
田様应助唠叨的宝马采纳,获得10
22秒前
22秒前
weirdo发布了新的文献求助10
22秒前
23秒前
韦思茹发布了新的文献求助10
23秒前
dudu完成签到 ,获得积分10
24秒前
陈乔乔完成签到,获得积分10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386