Electrochemical Direct Lithium Extraction: A Review of Electrodialysis and Capacitive Deionization Technologies

电渗析 电容去离子 电化学 萃取(化学) 锂(药物) 材料科学 工艺工程 化学 色谱法 工程类 电极 医学 生物化学 物理化学 内分泌学
作者
J. Park,Juwon Lee,Intae Shim,Eunju Kim,Sook-Hyun Nam,Jaewuk Koo,Tae-Mun Hwang
出处
期刊:Resources [Multidisciplinary Digital Publishing Institute]
卷期号:14 (2): 27-27
标识
DOI:10.3390/resources14020027
摘要

The rapid expansion of lithium-ion battery (LIB) markets for electric vehicles and renewable energy storage has exponentially increased lithium demand, driving research into sustainable extraction methods. Traditional lithium recovery from brine using evaporation ponds is resource intensive, consuming vast amounts of water and causing severe environmental issues. In response, Direct Lithium Extraction (DLE) technologies have emerged as more efficient, eco-friendly alternatives. This review explores two promising electrochemical DLE methods: Electrodialysis (ED) and Capacitive Deionization (CDI). ED employs ion-exchange membranes (IEMs), such as cation exchange membranes, to selectively transport lithium ions from sources like brine and seawater and achieves high recovery rates. IEMs utilize chemical and structural properties to enhance the selectivity of Li+ over competing ions like Mg2+ and Na+. However, ED faces challenges such as high energy consumption, membrane fouling, and reduced efficiency in ion-rich solutions. CDI uses electrostatic forces to adsorb lithium ions onto electrodes, offering low energy consumption and adaptability to varying lithium concentrations. Advanced variants, such as Membrane Capacitive Deionization (MCDI) and Flow Capacitive Deionization (FCDI), enhance ion selectivity and enable continuous operation. MCDI incorporates IEMs to reduce co-ion interference effects, while FCDI utilizes liquid electrodes to enhance scalability and operational flexibility. Advancements in electrode materials remain crucial to enhance selectivity and efficiency. Validating these methods at the pilot scale is crucial for assessing performance, scalability, and economic feasibility under real-world conditions. Future research should focus on reducing operational costs, developing more durable and selective electrodes, and creating integrated systems to enhance overall efficiency. By addressing these challenges, DLE technologies can provide sustainable solutions for lithium resource management, minimize environmental impact, and support a low-carbon future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_n0gOKL发布了新的文献求助10
2秒前
斑马兽完成签到,获得积分10
2秒前
电催化托应助飞鱼采纳,获得10
2秒前
海豚有海发布了新的文献求助10
3秒前
科研通AI5应助Nn采纳,获得10
3秒前
3秒前
huzi发布了新的文献求助20
4秒前
5秒前
7秒前
xxyhh给xxyhh的求助进行了留言
7秒前
8秒前
8秒前
8秒前
9秒前
ZHOU完成签到,获得积分10
9秒前
独特乘云完成签到,获得积分10
10秒前
青青闭上眼睛应助kk采纳,获得10
10秒前
10秒前
Anqiang发布了新的文献求助10
11秒前
凛冬完成签到,获得积分10
12秒前
怕黑寻双发布了新的文献求助10
13秒前
Sonezeroone完成签到,获得积分10
13秒前
lys发布了新的文献求助10
14秒前
凛冬发布了新的文献求助10
16秒前
UUU完成签到 ,获得积分10
16秒前
科研民工发布了新的文献求助10
16秒前
fmx完成签到,获得积分10
16秒前
不安的硬币完成签到,获得积分10
16秒前
Eternity完成签到,获得积分10
19秒前
打打应助怕黑寻双采纳,获得10
19秒前
SUNun关注了科研通微信公众号
19秒前
田様应助顺心凡采纳,获得10
21秒前
he完成签到 ,获得积分10
23秒前
Anqiang完成签到,获得积分10
26秒前
26秒前
27秒前
29秒前
30秒前
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781649
求助须知:如何正确求助?哪些是违规求助? 3327217
关于积分的说明 10230067
捐赠科研通 3042074
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799315
科研通“疑难数据库(出版商)”最低求助积分说明 758774