Predictive models for the surface roughness and subsurface damage depth of semiconductor materials in precision grinding

研磨 表面粗糙度 材料科学 表面光洁度 曲面(拓扑) 半导体 复合材料 光电子学 几何学 数学
作者
Shang Gao,Haoxiang Wang,Han Huang,Zhigang Dong,Renke Kang
出处
期刊:International journal of extreme manufacturing [IOP Publishing]
卷期号:7 (3): 035103-035103 被引量:16
标识
DOI:10.1088/2631-7990/adae67
摘要

Abstract Workpiece rotational grinding is widely used in the ultra-precision machining of hard and brittle semiconductor materials, including single-crystal silicon, silicon carbide, and gallium arsenide. Surface roughness and subsurface damage depth (SDD) are crucial indicators for evaluating the surface quality of these materials after grinding. Existing prediction models lack general applicability and do not accurately account for the complex material behavior under grinding conditions. This paper introduces novel models for predicting both surface roughness and SDD in hard and brittle semiconductor materials. The surface roughness model uniquely incorporates the material’s elastic recovery properties, revealing the significant impact of these properties on prediction accuracy. The SDD model is distinguished by its analysis of the interactions between abrasive grits and the workpiece, as well as the mechanisms governing stress-induced damage evolution. The surface roughness model and SDD model both establish a stable relationship with the grit depth of cut (GDC). Additionally, we have developed an analytical relationship between the GDC and grinding process parameters. This, in turn, enables the establishment of an analytical framework for predicting surface roughness and SDD based on grinding process parameters, which cannot be achieved by previous models. The models were validated through systematic experiments on three different semiconductor materials, demonstrating excellent agreement with experimental data, with prediction errors of 6.3% for surface roughness and 6.9% for SDD. Additionally, this study identifies variations in elastic recovery and material plasticity as critical factors influencing surface roughness and SDD across different materials. These findings significantly advance the accuracy of predictive models and broaden their applicability for grinding hard and brittle semiconductor materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
entity完成签到,获得积分10
刚刚
lylyspeechless完成签到,获得积分10
刚刚
oaim发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
科研白白完成签到 ,获得积分10
2秒前
Pupil完成签到,获得积分10
2秒前
2秒前
木子发布了新的文献求助10
2秒前
Wdd完成签到,获得积分10
3秒前
JY'完成签到,获得积分10
3秒前
南方周末发布了新的文献求助10
4秒前
大群发布了新的文献求助10
4秒前
无聊的亿先完成签到,获得积分10
5秒前
研途顺利完成签到,获得积分10
5秒前
jyy完成签到 ,获得积分10
5秒前
5秒前
WFLLL完成签到,获得积分10
5秒前
奥斯卡完成签到,获得积分10
6秒前
6秒前
6秒前
一颗小白菜完成签到,获得积分10
6秒前
heiye发布了新的文献求助10
7秒前
有结果完成签到,获得积分10
7秒前
7秒前
小劳完成签到,获得积分20
7秒前
宇宙中的先行者完成签到,获得积分10
7秒前
黄秋秋完成签到,获得积分10
8秒前
9秒前
天天向上发布了新的文献求助10
9秒前
顺利萧完成签到,获得积分10
10秒前
王计恩完成签到,获得积分10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
穆伟祺应助猪猪hero采纳,获得10
13秒前
13秒前
顺利萧发布了新的文献求助10
14秒前
ccm应助辰枫采纳,获得10
14秒前
Valent发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4306311
求助须知:如何正确求助?哪些是违规求助? 3828666
关于积分的说明 11980955
捐赠科研通 3469383
什么是DOI,文献DOI怎么找? 1902557
邀请新用户注册赠送积分活动 950069
科研通“疑难数据库(出版商)”最低求助积分说明 852012