Rising Water Levels and Vegetation Shifts Drive Substantial Reductions in Methane Emissions and Carbon Dioxide Uptake in a Great Lakes Coastal Freshwater Wetland

环境科学 湿地 涡度相关法 二氧化碳 生态系统 水文学(农业) 碳循环 大气科学 生态学 环境化学 化学 生物 岩土工程 地质学 工程类
作者
Angela C. I. Tang,Gil Bohrer,Avni Malhotra,Justine Missik,Fausto Machado‐Silva,Inke Forbrich
出处
期刊:Global Change Biology [Wiley]
卷期号:31 (2)
标识
DOI:10.1111/gcb.70053
摘要

ABSTRACT Coastal freshwater wetlands are critical ecosystems for both local and global carbon cycles, sequestering substantial carbon while also emitting methane (CH 4 ) due to anoxic conditions. Estuarine freshwater wetlands face unique challenges from fluctuating water levels, which influence water quality, vegetation, and carbon cycling. However, the response of CH 4 fluxes and their drivers to altered hydrology and vegetation remains unclear, hindering mechanistic modeling. To address these knowledge gaps, we studied an estuarine freshwater wetland in the Great Lakes region, where rising water levels led to a vegetation shift from emergent Typha dominance in 2015–2016 to floating‐leaved species in 2020–2022. Using eddy covariance flux measurements during the peak growing season (June–September) of both periods, we observed a 60% decrease in CH 4 emissions, from 81 ± 4 g C m −2 in 2015–2016 to 31 ± 3 g C m −2 in 2020–2022. This decline was driven by two main factors: (1) higher water levels, which suppressed ebullitive fluxes via increased hydrostatic pressure and extended CH 4 residence time, enhancing oxidation potential in the water column; and (2) reduced CH 4 conductance through plants. Net carbon dioxide (CO 2 ) uptake decreased by 90%, from −267 ± 26 g C m −2 in 2015–2016 to −27 ± 49 g C m −2 in 2020–2022. Additionally, diel CH 4 flux patterns shifted, with a distinct morning peak observed in 2015–2016 but absent in 2020–2022, suggesting changes in plant‐mediated transport and a potential decoupling from photosynthesis. The dominant factors influencing CH 4 fluxes shifted from water temperature and gross primary productivity in 2015–2016 to atmospheric pressure in 2020–2022, suggesting an increased role of ebullition as a primary transport pathway. Our results demonstrate that changes in water levels and vegetation can substantially alter CH 4 and CO 2 fluxes in coastal freshwater wetlands, underscoring the critical role of hydrological shifts in driving carbon dynamics in these ecosystems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灰灰喵完成签到 ,获得积分10
刚刚
初识完成签到,获得积分10
4秒前
酷波er应助简单以宁2采纳,获得10
5秒前
轻松尔蝶完成签到 ,获得积分10
5秒前
Ryjinisfine发布了新的文献求助20
5秒前
6秒前
大个应助晴语采纳,获得10
7秒前
tdtk发布了新的文献求助10
7秒前
8秒前
桐桐应助blue2021采纳,获得10
8秒前
14秒前
15秒前
15秒前
简单以宁2发布了新的文献求助10
18秒前
llllllb发布了新的文献求助10
20秒前
大个应助wanhe采纳,获得10
22秒前
如意发布了新的文献求助10
22秒前
23秒前
U2应助鲸鱼阿扑采纳,获得20
25秒前
尼古拉耶维奇完成签到,获得积分10
27秒前
简单以宁2完成签到,获得积分10
27秒前
喜静完成签到 ,获得积分10
29秒前
充电宝应助Q蒂采纳,获得10
29秒前
英姑应助一北采纳,获得10
30秒前
GD完成签到,获得积分10
31秒前
33秒前
36秒前
37秒前
blue2021发布了新的文献求助10
38秒前
39秒前
一北发布了新的文献求助10
41秒前
zhouzhou发布了新的文献求助200
46秒前
斯文道之发布了新的文献求助10
46秒前
辣辣完成签到,获得积分10
50秒前
51秒前
旺旺碎完成签到 ,获得积分10
54秒前
54秒前
Hou完成签到 ,获得积分10
58秒前
JamesPei应助精明的灵珊采纳,获得30
59秒前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779843
求助须知:如何正确求助?哪些是违规求助? 3325264
关于积分的说明 10222351
捐赠科研通 3040435
什么是DOI,文献DOI怎么找? 1668835
邀请新用户注册赠送积分活动 798788
科研通“疑难数据库(出版商)”最低求助积分说明 758563