Relative Fat Mass and Physical Indices as Predictors of Gallstone Formation: Insights From Machine Learning and Logistic Regression

医学 逻辑回归 回归 体质指数 回归分析 内科学 统计 数学
作者
Lei Deng,Shuting Wang,Daiwei Wan,Qi Zhang,Wei Shen,Zefen Xiao,Yu Zhang
出处
期刊:International Journal of General Medicine [Dove Medical Press]
卷期号:Volume 18: 509-527 被引量:3
标识
DOI:10.2147/ijgm.s507013
摘要

Gallstones (GS), a prevalent disorder of the biliary tract, markedly impair patients' quality of life. This study aims to construct predictive models employing diverse machine learning algorithms to elucidate risk factors linked to gallstone formation. This study integrated data from the National Health and Nutrition Examination Survey (NHANES) with a cohort of 7868 participants from Wuxi People's Hospital and Wuxi Second People's Hospital, including 830 individuals diagnosed with gallstones. To develop our predictive model, we employed four algorithms-Logistic Regression, Gaussian Naive Bayes (GNB), Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM). The models were validated internally through k-fold cross-validation and externally using independent datasets. Furthermore, we substantiated the link between relative fat mass (RFM) and gallstone formation by employing four logistic regression models, conducting subgroup analyses, and applying restricted cubic spline (RCS) curves. The logistic regression algorithm demonstrated superior predictive capability for all risk factors associated with gallstone occurrence compared to other machine learning models. SHAP analysis identified RFM, weight-to-waist index (WWI), waist circumference (WC), waist-to-height ratio (WHtR), and body mass index (BMI) as prominent predictors of gallstone occurrence, with RFM emerging as the primary determinant. A fully adjusted multivariate logistic regression analysis revealed a robust positive association between RFM and gallstones. Subgroup analysis further indicated that subgroup factors did not alter the positive relationship between RFM and gallstone prevalence. Among the four algorithmic models, logistic regression proved most effective in predicting gallstone occurrence. The model developed in this study offers clinicians a valuable tool for identifying critical prognostic factors, facilitating personalized patient monitoring and tailored management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有热心愿意完成签到,获得积分10
1秒前
2秒前
3秒前
6秒前
归尘发布了新的文献求助10
7秒前
7秒前
XS发布了新的文献求助10
8秒前
11秒前
归尘发布了新的文献求助10
12秒前
石晓岩发布了新的文献求助10
13秒前
Orange应助budingman采纳,获得10
14秒前
14秒前
14秒前
归尘发布了新的文献求助10
16秒前
flysky120完成签到,获得积分10
17秒前
18秒前
shelly0621发布了新的文献求助10
18秒前
小二郎应助XS采纳,获得10
19秒前
lynn完成签到 ,获得积分10
19秒前
柚子关注了科研通微信公众号
19秒前
19秒前
20秒前
科研通AI5应助266采纳,获得10
21秒前
22秒前
Ava应助XING采纳,获得10
22秒前
22秒前
菜菜发布了新的文献求助10
23秒前
满眼星辰发布了新的文献求助10
23秒前
25秒前
TS发布了新的文献求助30
26秒前
11发布了新的文献求助20
27秒前
菜菜完成签到,获得积分20
27秒前
宋越完成签到,获得积分10
28秒前
科研通AI5应助陈zz采纳,获得10
28秒前
shelly0621完成签到,获得积分10
28秒前
LLY发布了新的文献求助10
31秒前
酷波er应助栗子栗栗子采纳,获得10
32秒前
33秒前
洁白的故人完成签到 ,获得积分10
35秒前
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
求polyinfo中的所有数据,主要要共聚物的,有偿。 1500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水产动物免疫学 500
鱼类基因组学及基因组物种技术 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4176313
求助须知:如何正确求助?哪些是违规求助? 3711568
关于积分的说明 11704970
捐赠科研通 3394499
什么是DOI,文献DOI怎么找? 1862389
邀请新用户注册赠送积分活动 921145
科研通“疑难数据库(出版商)”最低求助积分说明 833030