Deep learning using molecular image of chemical structure

人工智能 深度学习 数量结构-活动关系 计算机科学 领域(数学) 机器学习 生物信息学 模棱两可 图像(数学) 模式识别(心理学) 化学 数学 生物化学 基因 程序设计语言 纯数学
作者
Yasunari Matsuzaka,Yoshihiro Uesawa
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 473-501
标识
DOI:10.1016/b978-0-443-18638-7.00005-0
摘要

Since the first appearance of artificial intelligence (AI) in the 1950s, it has gone through a fascinating history, changing its appearance until it has been recognized. The use of AI is receiving a lot of attention in the field of elucidation and evaluation of the physiological action mechanisms of toxic chemical compounds. This is because toxicity tests on experimental animals are generally used in the toxicity evaluation of chemical substances, and it is required to develop an in silico toxicity prediction method based on time reduction and consumption and the 3Rs perspectives. On the other hand, deep learning is a promising technique for achieving advanced prediction in quantitative structure-activity relationship (QSAR) toxicity prediction. However, QSAR did not fully exploit the capability of deep learning, which can directly analyze the molecular structure because molecular descriptors have traditionally been used to transfer chemical structure information to AI. Therefore, this study develops a novel structural information input method, “DeepSnap,” to learn the characteristics of the entire molecules as image data. In this study, the physiological activity value associated with each molecule was identified by inputting an image file generated from a three-dimensional (3D) molecular structure into a deep learning system developed in the field of image analysis, demonstrating that excellent predictive performance can be obtained. In this way, AI attempts to think beyond human judgment using deep learning. The advancement of this technology is projected to continue; however, the ambiguity of AI's judgment criteria has proven to be a “black box problem.” To dispel such concerns, the technique “explainable AI (XAI),” which explains the judgment basis of deep learning models, has grown in popularity recently. Although XAI has been studied in various directions in response to its high needs, the operating principle of the AI model itself has not yet been clarified. Therefore, comprehensive analysis of various chemical substances using large-scale reliable and explanatory toxicity information is expected to enable the development and enhancement of toxicity prediction methods using machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Miao完成签到,获得积分10
刚刚
2秒前
3秒前
旋律发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
三维发布了新的文献求助20
6秒前
7秒前
慕青应助蟑螂你好采纳,获得10
7秒前
Andyfragrance发布了新的文献求助30
8秒前
龙龙ff11_发布了新的文献求助10
8秒前
10秒前
YHC应助iY采纳,获得10
12秒前
快乐小狗发布了新的文献求助10
13秒前
Biophilia发布了新的文献求助10
13秒前
月球完成签到,获得积分10
13秒前
所所应助三维采纳,获得10
14秒前
15秒前
烟花应助西门向卉采纳,获得10
16秒前
拾光完成签到,获得积分10
17秒前
斯文败类应助旋律采纳,获得10
17秒前
18秒前
火以敬完成签到,获得积分10
18秒前
在水一方应助Andyfragrance采纳,获得30
19秒前
shang完成签到,获得积分10
19秒前
fbtj完成签到 ,获得积分10
19秒前
20秒前
拾光发布了新的文献求助10
20秒前
蟑螂你好发布了新的文献求助10
21秒前
RockRedfoo完成签到 ,获得积分10
21秒前
冰魂应助momo采纳,获得10
23秒前
23秒前
24秒前
25秒前
奶昔驳回了SYLH应助
26秒前
Yynnn发布了新的文献求助10
26秒前
香蕉吃鱼关注了科研通微信公众号
26秒前
量子星尘发布了新的文献求助10
27秒前
27秒前
28秒前
852应助叫滚滚采纳,获得10
28秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3866884
求助须知:如何正确求助?哪些是违规求助? 3409224
关于积分的说明 10662474
捐赠科研通 3133377
什么是DOI,文献DOI怎么找? 1728205
邀请新用户注册赠送积分活动 832780
科研通“疑难数据库(出版商)”最低求助积分说明 780460