W-Transformers: A Wavelet-based Transformer Framework for Univariate Time Series Forecasting

计算机科学 变压器 单变量 小波 时间序列 人工智能 机器学习 数据挖掘 多元统计 工程类 电压 电气工程
作者
Lena Sasal,Tanujit Chakraborty,Abdenour Hadid
标识
DOI:10.1109/icmla55696.2022.00111
摘要

Deep learning utilizing transformers has recently achieved a lot of success in many vital areas such as natural language processing, computer vision, anomaly detection, and recommendation systems, among many others. Among several merits of transformers, the ability to capture long-range temporal dependencies and interactions is desirable for time series forecasting, leading to its progress in various time series applications. In this paper, we build a transformer model for non-stationary time series. The problem is challenging yet crucially important. We present a novel framework for univariate time series representation learning based on the wavelet-based transformer encoder architecture and call it W-Transformer. The proposed W-Transformers utilize a maximal overlap discrete wavelet transformation (MODWT) to the time series data and build local transformers on the decomposed datasets to vividly capture the nonstationarity and long-range nonlinear dependencies in the time series. Evaluating our framework on several publicly available benchmark time series datasets from various domains and with diverse characteristics, we demonstrate that it performs, on average, significantly better than the baseline forecasters for short-term and long-term forecasting, even for datasets that consist of only a few hundred training samples.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
001完成签到 ,获得积分10
刚刚
syiimo完成签到 ,获得积分10
4秒前
mazhihao完成签到 ,获得积分10
6秒前
7秒前
kanong完成签到,获得积分0
11秒前
梓树完成签到,获得积分10
11秒前
Grey完成签到 ,获得积分10
18秒前
个性归尘应助科研通管家采纳,获得10
19秒前
cdercder应助科研通管家采纳,获得10
19秒前
个性归尘应助科研通管家采纳,获得10
19秒前
超级灰狼完成签到 ,获得积分10
24秒前
25秒前
知行者完成签到 ,获得积分10
25秒前
李新光完成签到 ,获得积分10
28秒前
Muyush完成签到,获得积分10
34秒前
37秒前
田甜发布了新的文献求助20
40秒前
wmszhd完成签到,获得积分10
44秒前
水星完成签到 ,获得积分10
47秒前
54秒前
56秒前
1分钟前
whitepiece完成签到,获得积分10
1分钟前
fxy完成签到,获得积分10
1分钟前
1分钟前
fxy发布了新的文献求助10
1分钟前
小鱼女侠完成签到 ,获得积分10
1分钟前
asaki完成签到,获得积分10
1分钟前
殷勤的凝海完成签到 ,获得积分10
1分钟前
YAN完成签到 ,获得积分10
1分钟前
温暖完成签到 ,获得积分10
1分钟前
名侦探柯基完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
louyu完成签到 ,获得积分10
1分钟前
xfy完成签到,获得积分10
1分钟前
1分钟前
always完成签到 ,获得积分10
1分钟前
TOUHOUU完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837567
求助须知:如何正确求助?哪些是违规求助? 3379673
关于积分的说明 10510121
捐赠科研通 3099308
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821402
科研通“疑难数据库(出版商)”最低求助积分说明 772615