Non-invasive dual attention TCN for electromyography and motion data fusion in lower limb ambulation prediction

计算机科学 人工智能 肌电图 传感器融合 融合 模式识别(心理学) 帧(网络) 理论(学习稳定性) 运动(物理) 特征(语言学) 机器学习 物理医学与康复 医学 电信 语言学 哲学
作者
Bin Zhou,Naishi Feng,Hong Wang,Yanzheng Lu,Chunfeng Wei,Daqi Jiang,Ziyang Li
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (4): 046051-046051 被引量:6
标识
DOI:10.1088/1741-2552/ac89b4
摘要

Abstract Objective. Recent technological advances show the feasibility of fusing surface electromyography (sEMG) signals and movement data to predict lower limb ambulation intentions. However, since the invasive fusion of different signals is a major impediment to improving predictive performance, searching for a non-invasive (NI) fusion mechanism for lower limb ambulation pattern recognition based on different modal features is crucial. Approach . We propose an end-to-end sequence prediction model with NI dual attention temporal convolutional networks (NIDA-TCNs) as a core to elegantly address the essential deficiencies of traditional decision models with heterogeneous signal fusion. Notably, the NIDA-TCN is a weighted fusion of sEMG and inertial measurement units with time-dependent effective hidden information in the temporal and channel dimensions using TCN and self-attentive mechanisms. The new model can better discriminate between walking, jumping, downstairs, and upstairs four lower limb activities of daily living. Main results . The results of this study show that the NIDA-TCN models produce predictions that significantly outperform both frame-wise and TCN models in terms of accuracy, sensitivity, precision, F1 score, and stability. Particularly, the NIDA-TCN with sequence decision fusion (NIDA-TCN-SDF) models, have maximum accuracy and stability increments of 3.37% and 4.95% relative to the frame-wise model, respectively, without manual feature-encoding and complex model parameters. Significance . It is concluded that the results demonstrate the validity and feasibility of the NIDA-TCN-SDF models to ensure the prediction of daily lower limb ambulation activities, paving the way to the development of fused heterogeneous signal decoding with better prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
别吃小米粥完成签到,获得积分10
1秒前
帅123完成签到 ,获得积分10
4秒前
青山完成签到,获得积分10
4秒前
keplek完成签到 ,获得积分10
4秒前
5秒前
孙非完成签到,获得积分10
5秒前
大胆妙芹完成签到,获得积分20
6秒前
儒雅路人完成签到,获得积分10
8秒前
大气夜山完成签到 ,获得积分10
9秒前
9秒前
牧紫菱完成签到,获得积分10
12秒前
shouyu29发布了新的文献求助10
13秒前
feilong完成签到,获得积分10
13秒前
顺顺尼发布了新的文献求助10
15秒前
百宝完成签到,获得积分10
15秒前
一路硕博完成签到,获得积分10
18秒前
慕容杏子完成签到,获得积分10
20秒前
俭朴的一曲完成签到,获得积分10
21秒前
zzz完成签到,获得积分10
22秒前
开放致远完成签到,获得积分10
22秒前
d_fishier完成签到 ,获得积分10
25秒前
正直的煎饼完成签到,获得积分10
27秒前
29秒前
30秒前
Akim应助杪123采纳,获得10
30秒前
shouyu29发布了新的文献求助10
33秒前
科研通AI2S应助Wang采纳,获得10
33秒前
lh完成签到,获得积分10
33秒前
俭朴的乐巧完成签到 ,获得积分10
34秒前
malenia完成签到,获得积分10
35秒前
研友_LMBAXn完成签到,获得积分10
35秒前
顺顺尼完成签到,获得积分10
36秒前
美合完成签到 ,获得积分10
37秒前
mm完成签到 ,获得积分10
38秒前
cuc完成签到,获得积分10
39秒前
40秒前
流子完成签到,获得积分10
41秒前
光亮的自行车完成签到,获得积分10
43秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792575
求助须知:如何正确求助?哪些是违规求助? 3336810
关于积分的说明 10282242
捐赠科研通 3053659
什么是DOI,文献DOI怎么找? 1675672
邀请新用户注册赠送积分活动 803696
科研通“疑难数据库(出版商)”最低求助积分说明 761495