A robust deep reinforcement learning approach to driverless taxi dispatching under uncertain demand

强化学习 计算机科学 稳健性(进化) 弹性(材料科学) 数学优化 交通拥挤 分布式计算 人工智能 工程类 运输工程 生物化学 化学 物理 数学 基因 热力学
作者
Xiaoting Zhou,Lubin Wu,Yu Zhang,Zhen‐Song Chen,Shancheng Jiang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:646: 119401-119401 被引量:10
标识
DOI:10.1016/j.ins.2023.119401
摘要

With the progressive technological advancement of autonomous vehicles, taxi service providers are expected to offer driverless taxi systems that alleviate traffic congestion and pollution. However, it is challenging to maintain the efficiency and reliability of a taxi service system due to the complexity of the traffic network and fluctuating traffic demand. In this paper, we present a robust variant of the twin delayed deep deterministic policy gradient algorithm (TD3), namely, adaptive TD3 integrated with robust optimization (ATD3-RO), to implement a fleet of autonomous vehicles for a taxi service under uncertain passenger demand. Our proposed method incorporates an adaptive module for integer-valued action generation, which also enhances the model's resilience to a larger action space. Considering the uncertain demand of passengers, we design a perturbation sampling-based method to generate adversarial examples for robust training. Additionally, we propose a robust optimization-based strategy to generate a lower bound and guide the convergence of the critic network during the model training process. In our case study, we validate the efficacy of ATD3-RO by constructing a reinforcement learning simulator of the driverless taxi transportation system using real taxi data. The simulation results demonstrate that ATD3-RO outperforms the general TD3 algorithm and other state-of-the-art reinforcement-learning-based approaches while improving learning efficiency. We assess the algorithm's robustness against sudden changes in requests, e.g., a surge in demand at some traffic nodes caused by an emergent event. The results suggest that ATD3-RO performs adaptive actions that are aligned with the variations in passenger demand. Finally, we prove that our model can provide a reliable dispatching strategy even at various ratios between driverless taxis and passenger demand.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巫雁完成签到,获得积分10
1秒前
科研狗发布了新的文献求助10
2秒前
2秒前
3秒前
平淡的天宇完成签到,获得积分10
3秒前
3秒前
难过无血发布了新的文献求助10
3秒前
3秒前
stkp完成签到,获得积分10
4秒前
koitoyu发布了新的文献求助10
4秒前
卡卡西应助IanYoung71采纳,获得10
4秒前
orixero应助岁安安安采纳,获得10
4秒前
wjr发布了新的文献求助10
6秒前
yuan完成签到,获得积分10
6秒前
yue发布了新的文献求助10
7秒前
沛沛完成签到,获得积分10
7秒前
nnl发布了新的文献求助10
8秒前
隐形曼青应助WANG采纳,获得10
8秒前
LL完成签到,获得积分10
8秒前
隐形黄蜂发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
小貂软糖完成签到,获得积分10
12秒前
爆米花应助可靠连虎采纳,获得10
12秒前
jjy完成签到,获得积分10
13秒前
13秒前
超级冷松完成签到 ,获得积分10
13秒前
搜集达人应助wjr采纳,获得10
14秒前
典雅的谷雪完成签到,获得积分10
14秒前
bckl888发布了新的文献求助10
14秒前
15秒前
跳跃隶驳回了Ava应助
16秒前
小貂软糖发布了新的文献求助10
16秒前
Ridley完成签到,获得积分10
17秒前
上官若男应助zhanyuji采纳,获得10
18秒前
clean发布了新的文献求助10
18秒前
19秒前
yu发布了新的文献求助10
19秒前
20秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801867
求助须知:如何正确求助?哪些是违规求助? 3347688
关于积分的说明 10334678
捐赠科研通 3063810
什么是DOI,文献DOI怎么找? 1682125
邀请新用户注册赠送积分活动 807916
科研通“疑难数据库(出版商)”最低求助积分说明 763969