Glyphosate Separating and Sensing for Precision Agriculture and Environmental Protection in the Era of Smart Materials

计算机科学 农药 农业 环境科学 业务 生物 生态学
作者
Jarosław Mazuryk,Katarzyna Klepacka,Włodzimierz Kutner,Piyush Sindhu Sharma
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:57 (27): 9898-9924 被引量:27
标识
DOI:10.1021/acs.est.3c01269
摘要

The present article critically and comprehensively reviews the most recent reports on smart sensors for determining glyphosate (GLP), an active agent of GLP-based herbicides (GBHs) traditionally used in agriculture over the past decades. Commercialized in 1974, GBHs have now reached 350 million hectares of crops in over 140 countries with an annual turnover of 11 billion USD worldwide. However, rolling exploitation of GLP and GBHs in the last decades has led to environmental pollution, animal intoxication, bacterial resistance, and sustained occupational exposure of the herbicide of farm and companies' workers. Intoxication with these herbicides dysregulates the microbiome-gut-brain axis, cholinergic neurotransmission, and endocrine system, causing paralytic ileus, hyperkalemia, oliguria, pulmonary edema, and cardiogenic shock. Precision agriculture, i.e., an (information technology)-enhanced approach to crop management, including a site-specific determination of agrochemicals, derives from the benefits of smart materials (SMs), data science, and nanosensors. Those typically feature fluorescent molecularly imprinted polymers or immunochemical aptamer artificial receptors integrated with electrochemical transducers. Fabricated as portable or wearable lab-on-chips, smartphones, and soft robotics and connected with SM-based devices that provide machine learning algorithms and online databases, they integrate, process, analyze, and interpret massive amounts of spatiotemporal data in a user-friendly and decision-making manner. Exploited for the ultrasensitive determination of toxins, including GLP, they will become practical tools in farmlands and point-of-care testing. Expectedly, smart sensors can be used for personalized diagnostics, real-time water, food, soil, and air quality monitoring, site-specific herbicide management, and crop control.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助Jiachenchen采纳,获得10
2秒前
momo完成签到,获得积分20
2秒前
4秒前
给我好好读书完成签到,获得积分10
4秒前
刘明莹发布了新的文献求助10
5秒前
留胡子完成签到,获得积分10
5秒前
8秒前
李真完成签到 ,获得积分10
9秒前
9秒前
Jiachenchen完成签到,获得积分10
9秒前
畅快谷秋完成签到,获得积分10
9秒前
丘比特应助留胡子采纳,获得10
13秒前
勤劳涵山发布了新的文献求助10
13秒前
义气钻石完成签到,获得积分10
17秒前
17秒前
Thien应助锦云采纳,获得10
18秒前
hjx完成签到 ,获得积分10
20秒前
wd完成签到,获得积分20
21秒前
wb发布了新的文献求助100
23秒前
wancy完成签到 ,获得积分10
27秒前
dax大雄完成签到 ,获得积分10
28秒前
所所应助紫皇采纳,获得10
31秒前
鹿梨完成签到 ,获得积分10
31秒前
linda给linda的求助进行了留言
34秒前
科研通AI5应助jjj采纳,获得30
35秒前
无花果应助王得胜采纳,获得10
36秒前
fgd发布了新的文献求助100
38秒前
wanci应助李真采纳,获得10
38秒前
wb完成签到,获得积分10
40秒前
科研通AI5应助巴达天使采纳,获得10
43秒前
程勋航发布了新的文献求助10
44秒前
45秒前
45秒前
46秒前
852应助彭立志采纳,获得10
47秒前
科研迪完成签到,获得积分10
48秒前
Sicily发布了新的文献求助10
50秒前
王得胜发布了新的文献求助10
50秒前
李真发布了新的文献求助10
51秒前
程勋航完成签到,获得积分10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783164
求助须知:如何正确求助?哪些是违规求助? 3328499
关于积分的说明 10236658
捐赠科研通 3043569
什么是DOI,文献DOI怎么找? 1670599
邀请新用户注册赠送积分活动 799766
科研通“疑难数据库(出版商)”最低求助积分说明 759119