A Context-based Chatbot Surpasses Radiologists and Generic ChatGPT in Following the ACR Appropriateness Guidelines

医学 聊天机器人 背景(考古学) 医学物理学 适宜性标准 放射科 人工智能 计算机科学 古生物学 生物
作者
Alexander Rau,Stephan Rau,Daniela Zoeller,Anna Maria Fink,Hien Tran,Caroline Wilpert,Johanna Nattenmueller,Jakob Neubauer,Fabian Bamberg,Marco Reisert,Maximilian Frederik Russe
出处
期刊:Radiology [Radiological Society of North America]
卷期号:308 (1) 被引量:79
标识
DOI:10.1148/radiol.230970
摘要

Background Radiologic imaging guidelines are crucial for accurate diagnosis and optimal patient care as they result in standardized decisions and thus reduce inappropriate imaging studies. Purpose To investigate the potential to support clinical decision-making using an interactive chatbot designed to provide personalized imaging recommendations from American College of Radiology (ACR) appropriateness criteria documents using semantic similarity processing. Materials and Methods The authors used 209 ACR appropriateness criteria documents as a specialized knowledge base and used LlamaIndex, a framework for connecting large language models with external data, and ChatGPT-3.5-turbo to create an appropriateness criteria context aware chatbot (accGPT). Fifty clinical case files were used to compare the performance of accGPT with that of general radiologists at varying experience levels and to generic ChatGPT-3.5 and 4.0. Results The performance of all chatbots reached at least that of humans. For the 50 case files, accGPT performed best in providing correct recommendations that were "usually appropriate" according to the ACR criteria and also provided the highest proportion of consistently correct answers in comparison with the generic chatbots and radiologists. Furthermore, the chatbots provided substantial time and cost savings, with an average decision time of 5 minutes and a cost of €0.19 ($0.21) for all cases, compared with 50 minutes and €29.99 ($33.24) for radiologists (both P < .01). Conclusion ChatGPT-based algorithms have the potential to substantially improve the decision-making for clinical imaging studies in accordance with ACR guidelines. Specifically, the performance of a context-based algorithm was superior to that of its generic counterpart, demonstrating the value of tailoring artificial intelligence solutions to specific health care applications. © RSNA, 2023 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kunny完成签到 ,获得积分10
刚刚
刚刚
海棠花未眠完成签到,获得积分10
2秒前
研友_ZbP41L发布了新的文献求助10
4秒前
demom完成签到 ,获得积分10
5秒前
7秒前
张章完成签到,获得积分20
7秒前
齐多达完成签到 ,获得积分10
7秒前
9秒前
nixx完成签到,获得积分10
10秒前
细腻沅完成签到,获得积分10
10秒前
轻松小张发布了新的文献求助10
14秒前
万能图书馆应助晚夜玉衡采纳,获得10
14秒前
小林太郎完成签到,获得积分0
17秒前
17秒前
科研通AI5应助王振有采纳,获得10
17秒前
150350完成签到 ,获得积分10
19秒前
罪恶完成签到,获得积分10
20秒前
蝴蝶变成毛毛虫完成签到,获得积分10
20秒前
烟花应助小何0404采纳,获得10
22秒前
Vicky完成签到 ,获得积分20
22秒前
张张发布了新的文献求助10
23秒前
科研通AI5应助轻松小张采纳,获得10
24秒前
27秒前
故里完成签到,获得积分10
28秒前
科研通AI5应助丢丢银采纳,获得50
31秒前
jenningseastera应助谢雷XIELei采纳,获得80
31秒前
今后应助张张采纳,获得10
32秒前
33秒前
mxz发布了新的文献求助10
34秒前
冰魂给之桃的求助进行了留言
34秒前
科研通AI5应助王建磊采纳,获得10
34秒前
daydayup完成签到,获得积分10
36秒前
36秒前
mao应助会飞的六眼飞鱼采纳,获得30
36秒前
大模型应助化研采纳,获得10
38秒前
better发布了新的文献求助30
39秒前
41秒前
陶醉的又夏完成签到 ,获得积分10
45秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776915
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209854
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 757998