Clinical Applications, Challenges, and Recommendations for Artificial Intelligence in Musculoskeletal and Soft-Tissue Ultrasound: AJR Expert Panel Narrative Review

医学 模式 超声波 医学物理学 肌肉骨骼疾病 肩袖 放射科 临床实习 物理疗法 病理 疾病 社会科学 社会学
作者
Paul H. Yi,Hillary W. Garner,Anna Hirschmann,Jon A. Jacobson,Patrick Omoumi,Kangrok Oh,John R. Zech,Young Han Lee
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:222 (3) 被引量:3
标识
DOI:10.2214/ajr.23.29530
摘要

Artificial intelligence (AI) is increasingly used in clinical practice for musculoskeletal imaging tasks, such as disease diagnosis and image reconstruction. AI applications in musculoskeletal imaging have focused primarily on radiography, CT, and MRI. Although musculoskeletal ultrasound stands to benefit from AI in similar ways, such applications have been relatively underdeveloped. In comparison with other modalities, ultrasound has unique advantages and disadvantages that must be considered in AI algorithm development and clinical translation. Challenges in developing AI for musculoskeletal ultrasound involve both clinical aspects of image acquisition and practical limitations in image processing and annotation. Solutions from other radiology subspecialties (e.g., crowdsourced annotations coordinated by professional societies), along with use cases (most commonly rotator cuff tendon tears and palpable soft-tissue masses), can be applied to musculoskeletal ultrasound to help develop AI. To facilitate creation of high-quality imaging datasets for AI model development, technologists and radiologists should focus on increasing uniformity in musculoskeletal ultrasound performance and increasing annotations of images for specific anatomic regions. This Expert Panel Narrative Review summarizes available evidence regarding AI's potential utility in musculoskeletal ultrasound and challenges facing its development. Recommendations for future AI advancement and clinical translation in musculoskeletal ultrasound are discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助123123采纳,获得10
1秒前
不安的白昼完成签到 ,获得积分10
1秒前
1秒前
可爱的函函应助司连喜采纳,获得10
1秒前
派大兴完成签到,获得积分20
4秒前
杂化轨道退役研究员完成签到,获得积分10
4秒前
6秒前
木子李完成签到 ,获得积分10
6秒前
6秒前
kmzzy完成签到 ,获得积分10
7秒前
9秒前
深情安青应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
Hello应助踏实雨采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
爆米花应助科研通管家采纳,获得10
11秒前
12秒前
China完成签到,获得积分10
13秒前
布医发布了新的文献求助10
13秒前
吱吱发布了新的文献求助10
13秒前
papa应助认真荣轩采纳,获得10
14秒前
15秒前
15秒前
botanist完成签到 ,获得积分10
16秒前
16秒前
神勇友灵完成签到,获得积分10
17秒前
19秒前
20秒前
正在下雨发布了新的文献求助10
20秒前
22秒前
22秒前
司连喜发布了新的文献求助10
22秒前
gggggd完成签到,获得积分10
22秒前
22秒前
布医完成签到,获得积分10
22秒前
24秒前
汉堡包应助执着的采枫采纳,获得10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780569
求助须知:如何正确求助?哪些是违规求助? 3326080
关于积分的说明 10225440
捐赠科研通 3041148
什么是DOI,文献DOI怎么找? 1669215
邀请新用户注册赠送积分活动 799028
科研通“疑难数据库(出版商)”最低求助积分说明 758669