Analysis of Automated Clinical Depression Diagnosis in a Chinese Corpus

萧条(经济学) 评定量表 心理学 蒙哥马利-奥斯伯格抑郁评定量表 人工智能 临床心理学 自然语言处理 精神科 计算机科学 重性抑郁障碍 发展心理学 认知 宏观经济学 经济
作者
Kaining Mao,Deborah Baofeng Wang,Tiansheng Zheng,Rongqi Jiao,Yanhui Zhu,Bin Wu,Qian Lei,Wei Lyu,Jie Chen,Minjie Ye
出处
期刊:IEEE Transactions on Biomedical Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:17 (5): 1135-1152 被引量:2
标识
DOI:10.1109/tbcas.2023.3291554
摘要

Depression clinical interview corpora are essential for advancing automated depression diagnosis. While previous studies have used written speech material in controlled settings, these materials do not accurately represent spontaneous conversational speech. Additionally, self-reported measures of depression are subject to bias, making the data unreliable for training models for real-world scenarios. This study introduces a new corpus of depression clinical interviews collected directly from a psychiatric hospital, containing 113 recordings with 52 healthy and 61 depressive patients. The subjects were examined using the Montgomery-Asberg Depression Rating Scale (MADRS) in Chinese. Their final diagnosis was based on medical evaluations through a clinical interview conducted by a psychiatry specialist. All interviews were audio-recorded and transcribed verbatim, and annotated by experienced physicians. This dataset is a valuable resource for automated depression detection research and is expected to advance the field of psychology. Baseline models for detecting and predicting depression presence and level were built, and descriptive statistics of audio and text features were calculated. The decision-making process of the model was also investigated and illustrated. To the best of our knowledge, this is the first study to collect a depression clinical interview corpus in Chinese and train machine learning models to diagnose depression patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fazat发布了新的文献求助10
刚刚
刚刚
汉堡包应助高兴白莲采纳,获得10
1秒前
留胡子的迎梦完成签到 ,获得积分10
2秒前
2秒前
3秒前
慕青应助hey采纳,获得10
4秒前
科研通AI5应助fazat采纳,获得30
4秒前
King16发布了新的文献求助10
5秒前
赵世璧发布了新的文献求助10
7秒前
Will给Will的求助进行了留言
9秒前
Cxyy发布了新的文献求助10
9秒前
10秒前
jinyu发布了新的文献求助10
16秒前
闪闪航空完成签到 ,获得积分10
16秒前
16秒前
手中的樱花完成签到 ,获得积分10
18秒前
19秒前
大力沛萍发布了新的文献求助10
22秒前
勤恳立轩完成签到,获得积分10
24秒前
科研通AI5应助没有熬夜采纳,获得30
24秒前
红黄蓝发布了新的文献求助30
24秒前
hzx发布了新的文献求助10
25秒前
27秒前
怡然洋葱发布了新的文献求助10
27秒前
28秒前
29秒前
阔达苡完成签到,获得积分10
29秒前
jinyu完成签到,获得积分10
29秒前
WangT发布了新的文献求助10
32秒前
无花果应助梓mua采纳,获得10
32秒前
32秒前
33秒前
孙傲发布了新的文献求助10
34秒前
田様应助susan采纳,获得30
35秒前
领导范儿应助李安全采纳,获得10
35秒前
Sherry99发布了新的文献求助10
35秒前
37秒前
37秒前
烟花应助hzx采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479398
求助须知:如何正确求助?哪些是违规求助? 3936880
关于积分的说明 12213231
捐赠科研通 3591569
什么是DOI,文献DOI怎么找? 1975047
邀请新用户注册赠送积分活动 1012217
科研通“疑难数据库(出版商)”最低求助积分说明 905566