Drawing a materials map with an autoencoder for lithium ionic conductors

锂(药物) 自编码 离子键合 导电体 计算机科学 材料科学 离子 人工智能 医学 化学 内科学 复合材料 深度学习 有机化学
作者
Yudai Yamaguchi,Taruto Atsumi,Kenta Kanamori,Naoto Tanibata,Hayami Takeda,Masanobu Nakayama,Masayuki Karasuyama,Ichiro Takeuchi
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1): 16799-16799 被引量:4
标识
DOI:10.1038/s41598-023-43921-1
摘要

Abstract Efforts to optimize known materials and enhance their performance are ongoing, driven by the advancements resulting from the discovery of novel functional materials. Traditionally, the search for and optimization of functional materials has relied on the experience and intuition of specialized researchers. However, materials informatics (MI), which integrates materials data and machine learning, has frequently been used to realize systematic and efficient materials exploration without depending on manual tasks. Nonetheless, the discovery of new materials using MI remains challenging. In this study, we propose a method for the discovery of materials outside the scope of existing databases by combining MI with the experience and intuition of researchers. Specifically, we designed a two-dimensional map that plots known materials data based on their composition and structure, facilitating researchers’ intuitive search for new materials. The materials map was implemented using an autoencoder-based neural network. We focused on the conductivity of 708 lithium oxide materials and considered the correlation with migration energy (ME), an index of lithium-ion conductivity. The distribution of existing data reflected in the materials map can contribute to the development of new lithium-ion conductive materials by enhancing the experience and intuition of material researchers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吉吉完成签到,获得积分10
刚刚
刚刚
1秒前
烟花应助无私无色采纳,获得10
1秒前
1秒前
传奇3应助强强强强去采纳,获得10
2秒前
2秒前
Hilda007发布了新的文献求助30
2秒前
乔燃发布了新的文献求助10
3秒前
可乐发布了新的文献求助10
3秒前
123发布了新的文献求助10
4秒前
归雁完成签到,获得积分10
5秒前
思源应助蓝胖胖采纳,获得10
6秒前
yangquanquan完成签到,获得积分10
6秒前
任性铅笔发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
科研通AI6应助风雅采纳,获得30
9秒前
wqkkk完成签到,获得积分10
11秒前
11秒前
12秒前
大个应助banksy采纳,获得10
12秒前
12秒前
zZZZCB发布了新的文献求助10
13秒前
13秒前
13秒前
保奔发布了新的文献求助10
14秒前
15秒前
小二郎应助li采纳,获得10
15秒前
15秒前
16秒前
16秒前
英俊的铭应助重要砖头采纳,获得10
16秒前
123关闭了123文献求助
17秒前
18秒前
18秒前
18秒前
无情的mm发布了新的文献求助10
18秒前
不止关注了科研通微信公众号
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547632
求助须知:如何正确求助?哪些是违规求助? 4633117
关于积分的说明 14629382
捐赠科研通 4574643
什么是DOI,文献DOI怎么找? 2508462
邀请新用户注册赠送积分活动 1484914
关于科研通互助平台的介绍 1455971