Multi‐Shell Copper Catalysts for Selective Electroreduction of CO2 to Multicarbon Chemicals

选择性 材料科学 催化作用 纳米颗粒 化学工程 过渡金属 产量(工程) 纳米技术 复合材料 冶金 化学 有机化学 工程类
作者
Yukun Xiao,Meng Wang,Haozhou Yang,Haoran Qiu,Haotian Lu,Yumin Da,Ganwen Chen,Tianyuan Jiang,Weiwei Fu,Bihao Hu,Junmei Chen,Lei Chen,Yishui Ding,Baihua Cui,Chonglai Jiang,Zejun Sun,Long Yu,Haotian Yang,Zhangliu Tian,Lei Wang
出处
期刊:Advanced Energy Materials [Wiley]
卷期号:14 (1) 被引量:30
标识
DOI:10.1002/aenm.202302556
摘要

Abstract Electrocatalytic CO 2 reduction (CO 2 R) coupled with renewable electricity has been considered as a promising route for the sustainability transition of energy and chemical industries. However, the unsatisfactory yield of desired products, particularly multicarbon (C 2+ ) products, has hindered the implementation of this technology. This work describes a strategy to enhance the yield of C 2+ product formation in CO 2 R by utilizing spatial confinement effects. The finite element simulation results suggest that increasing the number of shells in the catalyst wil lead to a high local concentration of *CO and promotes the formation of C 2+ products. Inspired by this, Cu nanoparticles are synthesized with desired hollow multi‐shell structures. The CO 2 reduction results confirm that as the number of shells increase, the hollow multi‐shell copper catalysts exhibit improved selectivity toward C 2+ products. Specifically, the Cu catalyst with 4.4‐shell achieved a high selectivity of over 80% toward C 2+ at a current density of 900 mA cm −2 . Evidence from in situ attenuated total reflection surface‐enhanced infrared absorption spectroscopy unveils that the multi‐shell Cu catalyst exhibits an enhanced *CO atop coverage and the stronger interaction with *CO atop compared to commercial Cu, confirming the simulation results. Overall, the work promises an effective approach for boosting CO 2 R selectivity toward value‐added chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助婷婷采纳,获得10
刚刚
刚刚
刚刚
呆萌绿海发布了新的文献求助10
刚刚
1秒前
2秒前
木染完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
kk发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
hbhbj发布了新的文献求助10
5秒前
5秒前
简简简发布了新的文献求助30
5秒前
CipherSage应助ailsa采纳,获得10
5秒前
5秒前
5秒前
5秒前
桐桐应助样样精通采纳,获得10
6秒前
斯文奇迹完成签到,获得积分10
6秒前
小蘑菇应助大鱼采纳,获得10
6秒前
7秒前
愤怒的勒发布了新的文献求助10
7秒前
7秒前
悠悠发布了新的文献求助10
7秒前
sevenhill应助苏晚采纳,获得20
7秒前
无花果应助siyue采纳,获得10
8秒前
8秒前
KaiZI发布了新的文献求助10
8秒前
8秒前
8秒前
Sci拖鞋发布了新的文献求助10
8秒前
努力搞科研完成签到,获得积分10
8秒前
开朗依琴完成签到 ,获得积分10
9秒前
9秒前
9秒前
Jiang发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5435585
求助须知:如何正确求助?哪些是违规求助? 4547596
关于积分的说明 14209584
捐赠科研通 4467868
什么是DOI,文献DOI怎么找? 2448774
邀请新用户注册赠送积分活动 1439634
关于科研通互助平台的介绍 1416255